Descripteur
Documents disponibles dans cette catégorie (138)



Etendre la recherche sur niveau(x) vers le bas
Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps / Mithila Unkule in Annals of Forest Science [en ligne], vol 79 n° 1 (2022)
![]()
[article]
Titre : Climate and ungulate browsing impair regeneration dynamics in spruce-fir-beech forests in the French Alps Type de document : Article/Communication Auteurs : Mithila Unkule, Auteur ; Christian Piedallu, Auteur ; Philippe Balandier, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] Alpes (France)
[Termes IGN] Cervidae
[Termes IGN] Fagus sylvatica
[Termes IGN] faune locale
[Termes IGN] hauteur des arbres
[Termes IGN] humidité du sol
[Termes IGN] Jura, massif du
[Termes IGN] Picea abies
[Termes IGN] placette d'échantillonnage
[Termes IGN] régénération (sylviculture)
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Key message: Different components of water balance and temperature reduce density and height growth of saplings of Picea abies (L.) H. Karst (Norway spruce), Abies alba Mill. (silver fir) and Fagus sylvatica L. (European beech) in mixed uneven-aged forests in the French Alps and Jura mountains. Ungulate browsing is an additional pressure on fir and beech that could jeopardise the renewal of these species in the future.
Context: The uncertainty in tree recruitment rates raises questions about the factors affecting regeneration processes in forests. Factors such as climate, light, competition and ungulate browsing pressure may play an important role in determining regeneration, forest structures and thus future forest composition.
Aims: The objective of this study was to quantify sapling densities and height increments of spruce, fir and beech and to identify dominant environmental variables influencing them in mixed uneven-aged forests in the French Alps and Jura mountains.
Methods: Sapling height increment and density were recorded in 152 plots, and non-linear mixed models were obtained to establish relations between them and environmental factors known to affect regeneration, namely altitude, slope, aspect, canopy openness, soil characteristics, temperature, precipitation and ungulate browsing.
Results: Regeneration density, varying from 0 to 7 saplings per m 2, decreased with sapling height and was also negatively affected for spruce by PET, but positively for fir by precipitation and for beech by mean annual soil water content. Height increment reached up to 50 cm annually, increasing with sapling height and canopy openness and decreasing under high maximum summer temperatures for spruce and beech. The statistical effect of different environmental variables varied slightly among species but trends were quite similar. Additionally, ungulate browsing was high, with fir being the most intensely browsed, followed closely by beech, while spruce was rarely browsed.
Conclusions: All these results suggest that more temperature warming and a decrease in water availability could negatively impact sapling growth and density in the three species, with possible reduction of forest renewal fluxes. The observed increase of ungulate populations leading to increased browsing could be particularly detrimental to fir saplings.Numéro de notice : A2022-509 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01126-y Date de publication en ligne : 23/03/2022 En ligne : https://doi.org/10.1186/s13595-022-01126-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101045
in Annals of Forest Science [en ligne] > vol 79 n° 1 (2022) . - n° 11[article]Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model / Courtney L. Giebink in Forest ecology and management, vol 517 (1 August 2022)
![]()
[article]
Titre : Climatic sensitivities derived from tree rings improve predictions of the forest vegetation simulator growth and yield model Type de document : Article/Communication Auteurs : Courtney L. Giebink, Auteur ; R. Justin DeRose, Auteur ; Mark Castle, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120256 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] cerne
[Termes IGN] croissance des arbres
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] Picea (genre)
[Termes IGN] Pinus ponderosa
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] puits de carbone
[Termes IGN] rendement
[Termes IGN] Utah (Etas-Unis)
[Termes IGN] variation saisonnière
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forest management has the potential to contribute to the removal of greenhouse gasses from the atmosphere via carbon sequestration and storage. To identify management actions that will maximize carbon removal and storage over the long term, models are needed that accurately and realistically represent forest responses to changing climate. The most widely used growth and yield model in the United States (U.S.), the Forest Vegetation Simulator (FVS), which also forms the basis for several forest carbon calculators, does not currently include the direct effect of climate variation on tree growth. We incorporated the effects of climate on tree diameter growth by combining tree-ring data with forest inventory data to parameterize a suite of alternative models characterizing the growth of three dominant tree species in the arid and moisture-limited state of Utah. These species, Pinus ponderosa Dougl. ex Laws, Pseudotsuga menziesii var. glauca Mayr (Franco), and Picea engelmannii Parry ex Engelm., encompass the full elevational range of montane forest types. The alternative models we considered differed progressively from the current FVS large-tree diameter growth model, first by changing to an annual time step, then by adding interannual climate effects, followed by model simplification (removal of predictors), and finally, complexification, including effects of spatial variation in climate and two-way interactions between predictors. We validated diameter growth predictions from these models with independent observations, and evaluated model performance in terms of accuracy, precision, and bias. We then compared predictions of future growth made by the existing large-tree diameter growth model used in FVS, i.e., without climate effects, to those of our updated models, including those with climate effects. We found that simpler models of tree growth outperform the current FVS model, and that the incorporation of climate effects improves model performance for two out of three species, in which growth is currently overpredicted by FVS. Diameter growth projected with improved, climate-sensitive models is less than the future tree growth projected by the current climate-insensitive FVS model. Tree rings can be used to identify and incorporate drivers of growth variation into a stand-level growth and yield model, giving more accurate predictions of the carbon uptake potential of forests under climate change. Numéro de notice : A2022-390 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120256 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120256 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100681
in Forest ecology and management > vol 517 (1 August 2022) . - n° 120256[article]Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)
![]()
[article]
Titre : Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system Type de document : Article/Communication Auteurs : Eric Hyyppä, Auteur ; Antero Kukko, Auteur ; Harri Kaartinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle numérique de terrain
[Termes IGN] Picea abies
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Today, high-quality reference tree measurements, including the position, diameter, height and volume, are cumbersome and slow to carry out, but highly needed for forest inventories based on airborne laser scanning. Mobile laser scanning technologies hold the promise for collecting reference data for forest inventories with an extremely high efficiency. Perhaps, the most efficient approach for reference data collection would be to mount a high-resolution laser scanning system on board an airborne vehicle flying at a low altitude above the forest canopy since this would allow recording reference samples of individual trees with the speed of flight. To demonstrate the potential of this technology, we mounted an in-house developed HeliALS-DW laser scanning system on board a helicopter and collected point cloud data in a boreal forest on three test sites containing a total of 1469 trees. The obtained point clouds incorporated sufficiently many high-quality stem hits for estimating the stem curves and stem volumes of individual trees since the point clouds had a relatively high point density of 2200–3800 echoes/m2, and the scanner had been tilted by 15° from the nadir to increase the possibility of recording stem hits. To automatically estimate the diameters at breast height (DBH) and stem curves of individual trees, we used algorithms designed to tolerate moderate drifts in the trajectory of the laser scanner. Furthermore, the stem volumes of individual trees were computed by using the estimated stem curves and tree heights without any allometric models. Using the proposed methods, we were able to estimate the stem curves with a root-mean-square error (RMSE) of 1.7–2.6 cm (6–9%) while detecting 42–71% of the trees. The RMSE of stem volume estimates was 0.1–0.15 m3 (12–21%). We also showed that the tree detection rate could be improved up to 87–96% for trees with a DBH exceeding 20 cm if slightly larger average errors for the stem attributes were allowed. Our results pave the way for using high-resolution airborne laser scanning for field reference data collection by conducting direct measurements of tree stems with a high efficiency. Numéro de notice : A2022-298 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.srs.2022.100050 Date de publication en ligne : 09/04/2022 En ligne : https://doi.org/10.1016/j.srs.2022.100050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100464
in Science of remote sensing > vol 5 (June 2022) . - n° 100050[article]Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation / Joerg Roessinger in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Funding for planting missing species financially supports the conversion from pure even-aged to uneven-aged mixed forests and climate change mitigation Type de document : Article/Communication Auteurs : Joerg Roessinger, Auteur ; Ladislav Kulla, Auteur ; Vlastimil Murgaš, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 517 - 534 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] Carpates
[Termes IGN] conversion forestière
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt équienne
[Termes IGN] forêt inéquienne
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] plantation forestière
[Termes IGN] politique de conservation (biodiversité)
[Termes IGN] régénération (sylviculture)
[Termes IGN] service écosystémique
[Termes IGN] volume en bois
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Mountain spruce forests in Central Europe decline under storms and bark beetle calamities driven by climate change. A stabilisation by planting rare or missing tree species is expensive and requires funding. A funding policy should mitigate climate change and support biodiversity. The goal of this study was to identify a conversion strategy of even-aged spruce-dominated forest stands to uneven-aged mixed stands with spruce (Picea abies (L.) H.Karst.), beech (Fagus sylvatica L.), and fir (Abies alba Mill.). A simultaneous nonlinear optimisation of the number of planted trees and harvested trees per species and per period schedules stand treatments aiming to maximise the long-term financial outcome. Planting modelling extends a density-dependent stand-level matrix transition model based on diameter classes with an age-class-based model for artificial regeneration. An optimal conversion strategy was applied for five funding policy schemes, each for five initial states representing different stages of age and species composition typical for spruce forest conversion in the mountain zone of the Western Carpathians. Only 50% and higher funding of planting costs for the minor/missing fir and beech species facilitates a substantial increase of their shares in stand volume. Funding decreases the volume failure due to mortality. Funding increases the standing and harvested volume, which mitigates climate change by increasing the carbon sequestration. Funding causes unintended effects on ecosystem services by lowering harvest diameters, decreasing the volume of less profitable beech, and temporarily reducing the stand density aimed at supporting plantings and their diameter increments. Numéro de notice : A2022-418 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01456-6 Date de publication en ligne : 07/05/2022 En ligne : https://doi.org/10.1007/s10342-022-01456-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100781
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 517 - 534[article]Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
![]()
[article]
Titre : Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data Type de document : Article/Communication Auteurs : Michele Dalponte, Auteur ; Alvar J. I. Kallio, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dépérissement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] Norvège
[Termes IGN] Perceptron multicouche
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] régression logistique
[Termes IGN] santé des forêts
[Termes IGN] semis de pointsRésumé : (auteur) Wood decay caused by pathogenic fungi in Norway spruce forests causes severe economic losses in the forestry sector, and currently no efficient methods exist to detect infected trees. The detection of wood decay could potentially lead to improvements in forest management and could help in reducing economic losses. In this study, airborne hyperspectral data were used to detect the presence of wood decay in the trees in two forest areas located in Etnedal (dataset I) and Gran (dataset II) municipalities, in southern Norway. The hyperspectral data used consisted of images acquired by two sensors operating in the VNIR and SWIR parts of the spectrum. Corresponding ground reference data were collected in Etnedal using a cut-to-length harvester while in Gran, field measurements were collected manually. Airborne laser scanning (ALS) data were used to detect the individual tree crowns (ITCs) in both sites. Different approaches to deal with pixels inside each ITC were considered: in particular, pixels were either aggregated to a unique value per ITC (i.e., mean, weighted mean, median, centermost pixel) or analyzed in an unaggregated way. Multiple classification methods were explored to predict rot presence: logistic regression, feed forward neural networks, and convolutional neural networks. The results showed that wood decay could be detected, even if with accuracy varying among the two datasets. The best results on the Etnedal dataset were obtained using a convolution neural network with the first five components of a principal component analysis as input (OA = 65.5%), while on the Gran dataset, the best result was obtained using LASSO with logistic regression and data aggregated using the weighted mean (OA = 61.4%). In general, the differences among aggregated and unaggregated data were small. Numéro de notice : A2022-352 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.3390/rs14081892 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.3390/rs14081892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100541
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1892[article]Data assimilation of growing stock volume using a sequence of remote sensing data from different sensors / Niels Lindgren in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
PermalinkEffect of climate change on the growth of tree species: Dendroclimatological analysis / Archana Gauli in Forests, vol 13 n° 4 (April 2022)
PermalinkChanges of tree stem biomass in European forests since 1950 / Aleksandr Lebedev in Journal of forest science, vol 68 n° 3 (March 2022)
PermalinkUnexpected negative effect of available water capacity detected on recent conifer forest growth trends across wide environmental gradients / Clémentine Ols in Ecosystems, vol 25 n° 2 (March 2022)
PermalinkForest floor alteration by canopy trees and soil wetness drive regeneration of a spruce-beech forest / Pavel Daněk in Forest ecology and management, vol 504 (15 January 2022)
PermalinkFactors affecting winter damage and recovery of newly planted Norway spruce seedlings in boreal forests / Jaana Luoranen in Forest ecology and management, vol 503 (1 January 2022)
PermalinkGenetic diversity of sessile oak populations in the Czech Republic / Jakub Dvořák in Journal of forest science, vol 68 n° 1 (January 2022)
PermalinkUnderstory plant community responses to widespread spruce mortality in a subalpine forest / Trevor A. Carter in Journal of vegetation science, vol 33 n° 1 (January 2022)
PermalinkModeling post-logging height growth of black spruce-dominated boreal forests by combining airborne LiDAR and time since harvest maps / Batistin Bour in Forest ecology and management, vol 502 (15 december 2021)
PermalinkThe efficiency of retention measures in continuous-cover forestry for conserving epiphytic cryptogams: A case study on Abies alba / Stefan Kaufmann in Forest ecology and management, vol 502 (15 december 2021)
Permalink