Descripteur
Termes descripteurs IGN > végétation > arbre (flore) > arbre caducifolié
arbre caducifoliéSynonyme(s)arbre a feuilles caduquesVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
A meta-analysis of changes in soil organic carbon stocks after afforestation with deciduous broadleaved, sempervirent broadleaved, and conifer tree species / Guolong Hou in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
![]()
[article]
Titre : A meta-analysis of changes in soil organic carbon stocks after afforestation with deciduous broadleaved, sempervirent broadleaved, and conifer tree species Type de document : Article/Communication Auteurs : Guolong Hou, Auteur ; Claudio O. Delang, Auteur ; Xixi Lu, Auteur ; Lei Gao, Auteur Année de publication : 2020 Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] afforestation
[Termes descripteurs IGN] arbre caducifolié
[Termes descripteurs IGN] arbre sempervirent
[Termes descripteurs IGN] boisement artificiel
[Termes descripteurs IGN] carbone
[Termes descripteurs IGN] feuillu
[Termes descripteurs IGN] pinophyta
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] sol
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Key message: Different tree species have dissimilar capacities to sequester soil organic carbon (SOC). Deciduous broadleaved trees show the most stable increase in SOC stock after afforestation than other tree species, while sempervirent conifer trees show the lowest rate of SOC stock change. Sempervirent broadleaved trees show the greatest increase in SOC stock 20 years after afforestation.
Context: The rate at which soil organic carbon (SOC) stock changes after afforestation varies considerably with the tree species. A better understanding of the role of tree species in SOC change dynamic is needed to evaluate the SOC sequestration potential of afforestation programs.
Aims: The aim of this paper is to identify the dissimilar rates at which different tree species sequester SOC, following afforestation.
Methods: We complete a meta-analysis with 544 data points from 261 sites in 90 papers. We group tree species into decidious broadleved, sempervirent broadleaved and sempervirent conifer. We use standardization and/or extrapolation methods to standardize soil depths. Statistical analysis test the main effects of tree species and their interactions with previous land use and plantation age on SOC stock change after afforestation.
Results: Deciduous broadleaved trees show a stable increase in SOC stock, and are especially suited for afforestation of grassland or soils with high initial SOC. Sempervirent broadleaved afforestation results in loss of SOC stock in young stands, but greater SOC stock in mature stands. Sempervirent conifer trees show the lowest rate of SOC stock change, but are suitable for nutrient-poor soil.
Conclusion: The results emphasize the importance of considering tree species when estimating SOC stock change, in particular when carbon sequestration is an objective of afforestation programs.Numéro de notice : A2020-590 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-00997-3 date de publication en ligne : 25/09/2020 En ligne : https://doi.org/10.1007/s13595-020-00997-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95921
in Annals of Forest Science [en ligne] > vol 77 n° 4 (December 2020) . - 13 p.[article]Mapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
![]()
[article]
Titre : Mapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery Type de document : Article/Communication Auteurs : Astrid Helena Huechacona-Ruiz, Auteur ; Juan Manuel Dupuy, Auteur ; Naomi B. Schwartz, Auteur Année de publication : 2020 Article en page(s) : n° 1234 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse des mélanges spectraux
[Termes descripteurs IGN] arbre caducifolié
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] YucatanRésumé : (auteur) In tropical dry forests, deciduousness (i.e., leaf shedding during the dry season) is an important adaptation of plants to cope with water limitation, which helps trees adjust to seasonal drought. Deciduousness is also a critical factor determining the timing and duration of carbon fixation rates, and affecting energy, water, and carbon balance. Therefore, quantifying deciduousness is vital to understand important ecosystem processes in tropical dry forests. The aim of this study was to map tree species deciduousness in three types of tropical dry forests along a precipitation gradient in the Yucatan Peninsula using Sentinel-2 imagery. We propose an approach that combines reflectance of visible and near-infrared bands, normalized difference vegetation index (NDVI), spectral unmixing deciduous fraction, and several texture metrics to estimate the spatial distribution of tree species deciduousness. Deciduousness in the study area was highly variable and decreased along the precipitation gradient, while the spatial variation in deciduousness among sites followed an inverse pattern, ranging from 91.5 to 43.3% and from 3.4 to 9.4% respectively from the northwest to the southeast of the peninsula. Most of the variation in deciduousness was predicted jointly by spectral variables and texture metrics, but texture metrics had a higher exclusive contribution. Moreover, including texture metrics as independent variables increased the variance of deciduousness explained by the models from R2 = 0.56 to R2 = 0.60 and the root mean square error (RMSE) was reduced from 16.9% to 16.2%. We present the first spatially continuous deciduousness map of the three most important vegetation types in the Yucatan Peninsula using high-resolution imagery. Numéro de notice : A2020-756 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11111234 date de publication en ligne : 23/11/2020 En ligne : https://doi.org/10.3390/f11111234 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96468
in Forests > vol 11 n°11 (November 2020) . - n° 1234[article]Deep learning for conifer/deciduous classification of airborne LiDAR 3D point clouds representing individual trees / Hamid Hamraz in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
![]()
[article]
Titre : Deep learning for conifer/deciduous classification of airborne LiDAR 3D point clouds representing individual trees Type de document : Article/Communication Auteurs : Hamid Hamraz, Auteur ; Nathan B. Jacobs, Auteur ; Marco A. Contreras, Auteur ; Chase H. Clark, Auteur Année de publication : 2019 Article en page(s) : pp 219 - 230 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre caducifolié
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] pinophyta
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) The purpose of this study was to investigate the use of deep learning for coniferous/deciduous classification of individual trees segmented from airborne LiDAR data. To enable processing by a deep convolutional neural network (CNN), we designed two discrete representations using leaf-off and leaf-on LiDAR data: a digital surface model with four channels (DSM × 4) and a set of four 2D views (4 × 2D). A training dataset of tree crowns was generated via segmentation of tree crowns, followed by co-registration with field data. Potential mislabels due to GPS error or tree leaning were corrected using a statistical ensemble filtering procedure. Because the training data was heavily unbalanced (~8% conifers), we trained an ensemble of CNNs on random balanced sub-samples. Benchmarked against multiple traditional shallow learning methods using manually designed features, the CNNs improved accuracies up to 14%. The 4 × 2D representation yielded similar classification accuracies to the DSM × 4 representation (~82% coniferous and ~90% deciduous) while converging faster. Further experimentation showed that early/late fusion of the channels in the representations did not affect the accuracies in a significant way. The data augmentation that was used for the CNN training improved the classification accuracies, but more real training instances (especially coniferous) likely results in much stronger improvements. Leaf-off LiDAR data were the primary source of useful information, which is likely due to the perennial nature of coniferous foliage. LiDAR intensity values also proved to be useful, but normalization yielded no significant improvement. As we observed, large training data may compensate for the lack of a subset of important domain data. Lastly, the classification accuracies of overstory trees (~90%) were more balanced than those of understory trees (~90% deciduous and ~65% coniferous), which is likely due to the incomplete capture of understory tree crowns via airborne LiDAR. In domains like remote sensing and biomedical imaging, where the data contain a large amount of information and are not friendly to human visual system, human-designed features may become suboptimal. As exemplified by this study, automatic, objective derivation of optimal features via deep learning can improve prediction tasks in such domains. Numéro de notice : A2019-547 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.10.011 date de publication en ligne : 03/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.10.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94192
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019) . - pp 219 - 230[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019123 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019122 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Increasing precision for French forest inventory estimates using the k-NN technique with optical and photogrammetric data and model-assisted estimators / Dinesh Babu Irulappa Pillai Vijayakumar in Remote sensing, vol 11 n° 8 (August 2019)
![]()
[article]
Titre : Increasing precision for French forest inventory estimates using the k-NN technique with optical and photogrammetric data and model-assisted estimators Type de document : Article/Communication Auteurs : Dinesh Babu Irulappa Pillai Vijayakumar , Auteur ; Jean-Pierre Renaud, Auteur ; François Morneau
, Auteur ; Ronald E. McRoberts, Auteur ; Cédric Vega
, Auteur
Année de publication : 2019 Projets : DIABOLO / Packalen, Tuula Article en page(s) : n° 991 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] arbre caducifolié
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] feuillu
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] inférence statistique
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] inventaire forestier national (données France)
[Termes descripteurs IGN] modèle numérique de surface de la canopée
[Termes descripteurs IGN] Orléans, forêt d' (Loiret)
[Termes descripteurs IGN] photogrammétrie numérique
[Termes descripteurs IGN] Pinus pinaster
[Termes descripteurs IGN] Pinus sylvestris
[Termes descripteurs IGN] Quercus pedunculata
[Termes descripteurs IGN] quercus sessiliflora
[Termes descripteurs IGN] Sologne (France)
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Multisource forest inventory methods were developed to improve the precision of national forest inventory estimates. These methods rely on the combination of inventory data and auxiliary information correlated with forest attributes of interest. As these methods have been predominantly tested over coniferous forests, the present study used this approach for heterogeneous and complex deciduous forests in the center of France. The auxiliary data considered included a forest type map, Landsat 8 spectral bands and derived vegetation indexes, and 3D variables derived from photogrammetric canopy height models. On a subset area, changes in canopy height estimated from two successive photogrammetric models were also used. A model-assisted inference framework, using a k nearest-neighbors approach, was used to predict 11 field inventory variables simultaneously. The results showed that among the auxiliary variables tested, 3D metrics improved the precision of dendrometric estimates more than other auxiliary variables. Relative efficiencies (RE) varying from 2.15 for volume to 1.04 for stand density were obtained using all auxiliary variables. Canopy height changes also increased RE from 3% to 26%. Our results confirmed the importance of 3D metrics as auxiliary variables and demonstrated the value of canopy change variables for increasing the precision of estimates of forest structural attributes such as density and quadratic mean diameter. Numéro de notice : A2019-382 Affiliation des auteurs : LIF+Ext (2012-2019) Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11080991 date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.3390/rs11080991 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93456
in Remote sensing > vol 11 n° 8 (August 2019) . - n° 991[article]Potential of Sentinel-1 data for monitoring temperate mixed forest phenology / Pierre-Louis Frison in Remote sensing, vol 10 n° 12 (December 2018)
![]()
[article]
Titre : Potential of Sentinel-1 data for monitoring temperate mixed forest phenology Type de document : Article/Communication Auteurs : Pierre-Louis Frison , Auteur ; Bénédicte Fruneau
, Auteur ; Syrine Kmiha, Auteur ; Kamel Soudani, Auteur ; Eric Dufrêne, Auteur ; Thuy Le Toan, Auteur ; Thierry Koleck, Auteur ; Ludovic Villard, Auteur ; Eric Mougin, Auteur ; Jean-Paul Rudant
, Auteur
Année de publication : 2018 Projets : 3-projet - voir note / Article en page(s) : n° 2049 Note générale : bibliographie
This research was funding by the Centre National d’Etudes Spatiales (CNES), grant number DCT/SI/TR/2016-01532Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] arbre caducifolié
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] cohérence des données
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] Fontainebleau, forêt de
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] surveillance forestièreRésumé : (auteur) In this study, the potential of Sentinel-1 data to seasonally monitor temperate forests was investigated by analyzing radar signatures observed from plots in the Fontainebleau Forest of the Ile de France region, France, for the period extending from March 2015 to January 2016. Radar backscattering coefficients, σ0 and the amplitude of temporal interferometric coherence profiles in relation to environmental variables are shown, such as in situ precipitation and air temperature. The high temporal frequency of Sentinel-1 acquisitions (i.e., twelve days, or six, if both Sentinel-1A and B are combined over Europe) and the dual polarization configuration (VV and VH over most land surfaces) made a significant contribution. In particular, the radar backscattering coefficient ratio of VV to VH polarization, σ0VV/σ0VH , showed a well-pronounced seasonality that was correlated with vegetation phenology, as confirmed in comparison to NDVI profiles derived from Landsat-8 (r = 0.77) over stands of deciduous trees. These results illustrate the high potential of Sentinel-1 data for monitoring vegetation, and as these data are not sensitive to the atmosphere, the phenology could be estimated with more accuracy than optical data. These observations will be quantitatively analyzed with the use of electromagnetic models in the near future. Numéro de notice : A2018-669 Affiliation des auteurs : UPEM-LaSTIG+Ext (2016-2019) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs10122049 date de publication en ligne : 17/12/2018 En ligne : https://doi.org/10.3390/rs10122049 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94271
in Remote sensing > vol 10 n° 12 (December 2018) . - n° 2049[article]Estimation of forest above-ground biomass by geographically weighted regression and machine learning with Sentinel imagery / Lin Chen in Forests, vol 9 n° 10 (October 2018)
PermalinkStrategies for climate-smart forest management in Austria / Robert Jandl in Forests, vol 9 n° 10 (October 2018)
PermalinkMulti-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data / Siddhartha Khare in Geocarto international, vol 33 n° 7 (July 2018)
PermalinkThe German Forest Strategy 2020: Target achievement control using national forest inventory results / Martin Lorenz in Annals of forest research, vol 61 n° 2 (July - December 2018)
PermalinkVertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds / Hamid Hamraz in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkTotal canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR / Milutin Milenković in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)
PermalinkPermalinkPermalinkPermalinkPermalink