Descripteur



Etendre la recherche sur niveau(x) vers le bas
Potential of crowdsourced traces for detecting updates in authoritative geographic data / Stefan Ivanovic (2020)
![]()
Titre : Potential of crowdsourced traces for detecting updates in authoritative geographic data Type de document : Article/Communication Auteurs : Stefan Ivanovic , Auteur ; Ana-Maria Olteanu-Raimond
, Auteur ; Sébastien Mustière
, Auteur ; Thomas Devogele, Auteur
Congrès : AGILE 2019, 22nd conference on Geo-information science (17 - 20 juin 2019; Limassol, Chypre) , Commanditaire
Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2020 Collection : Lecture notes in Geoinformation and Cartography, ISSN 1863-2246 Importance : pp 205 - 221 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] appariement de données localisées
[Termes descripteurs IGN] BD Topo
[Termes descripteurs IGN] chemin rural
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données localisées de référence
[Termes descripteurs IGN] mise à jour de base de données
[Termes descripteurs IGN] montagne
[Termes descripteurs IGN] route
[Termes descripteurs IGN] trace GPSRésumé : (auteur) Crowdsourced traces collected by GPS devices during sports activities are now widely available on different websites. The goal of this paper is to study the potential of crowdsourced traces coming from GPS devices to highlight updates in authoritative geographic data. To reach this goal, an approach based on two steps is proposed. First, a data matching method is applied to match authoritative data and crowdsourced traces. Second, for the non-matched crowdsourced segments composing a trace, different criteria are defined to decide if whether or not, non-matched segments should be considered as an alert for update in authoritative data. The proposed approach is tested on crowdsourced traces and on BDTOPO® authoritative road and path network in mountain area. The results are promising: 727, 1 km of missing paths were found in the test area, which corresponds to 7.7% of the total length of used traces. The discovered missing paths also represent a contribution of 2.4% of the total length of BDTopo® road and path network in the test area. Numéro de notice : C2019-008 Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/978-3-030-14745-7_12 date de publication en ligne : 16/04/2019 En ligne : http://dx.doi.org/10.1007/978-3-030-14745-7_12 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92911 Analysing the positional accuracy of GNSS multi-tracks obtained from VGI sources to generate improved 3D mean axes / Antonio Tomás Mozas-Calvache in International journal of geographical information science IJGIS, vol 33 n°11 (November 2019)
![]()
[article]
Titre : Analysing the positional accuracy of GNSS multi-tracks obtained from VGI sources to generate improved 3D mean axes Type de document : Article/Communication Auteurs : Antonio Tomás Mozas-Calvache, Auteur ; Francisco Javier Ariza-López, Auteur Année de publication : 2019 Article en page(s) : pp 2170 - 2187 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes descripteurs IGN] axe médian
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] positionnement par GNSS
[Termes descripteurs IGN] précision du positionnement
[Termes descripteurs IGN] qualité des données
[Termes descripteurs IGN] réseau routier
[Termes descripteurs IGN] trace GPS
[Termes descripteurs IGN] vitesse de déplacementRésumé : (auteur) The sharing of Global Navigation Satellite System (GNSS) tracks on the Internet is increasing enormously. Every day a great number of users capture routes using different devices and share these data. Individually these tracks present a poor positional accuracy because these devices obtain positions with accuracy of about 5-10 metres. In addition, they are usually captured for navigation and not for surveying. However, we can take advantage of the great quantity of tracks of the same linear element in order to obtain a more accurate solution. This study analyses this possibility using a wide set of tracks obtained in known conditions. We emulated those tracks obtained by Volunteered Geographic Information (VGI) users and we compared the mean axis obtained using all tracks with others obtained from a more accurate source. Additionally, we analyse the displacement of other axes obtained by varying several parameters such as the number of tracks and their length or by dividing the route into sections in function of sinuosity, etc. The results have shown an improved 3D mean axis and the viability of the method proposed in this study in order to use axes obtained from several tracks in maps at certain scales. Numéro de notice : A2019-429 Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1645335 date de publication en ligne : 26/07/2019 En ligne : https://doi.org/10.1080/13658816.2019.1645335 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93563
in International journal of geographical information science IJGIS > vol 33 n°11 (November 2019) . - pp 2170 - 2187[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019082 RAB Revue Centre de documentation En réserve 3L Disponible 079-2019081 SL Revue Centre de documentation Revues en salle Disponible Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning / Yann Méneroux in International Journal of Data Science and Analytics JDSA, vol inconnu ([01/10/2019])
![]()
[article]
Titre : Traffic signal detection from in-vehicle GPS speed profiles using functional data analysis and machine learning Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; Arnaud Le Guilcher
, Auteur ; Guillaume Saint Pierre, Auteur ; Mohammad Ghasemi Hamed, Auteur ; Sébastien Mustière
, Auteur ; O. Orfila, Auteur
Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] analyse fonctionnelle (mathématiques)
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] carte routière
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] données routières
[Termes descripteurs IGN] feu de circulation
[Termes descripteurs IGN] inférence
[Termes descripteurs IGN] reconnaissance de formes
[Termes descripteurs IGN] signalisation routière
[Termes descripteurs IGN] trace GPS
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] transformation en ondelettes
[Termes descripteurs IGN] vitesseRésumé : (auteur) The increasing availability of large-scale global positioning system data stemming from in-vehicle-embedded terminal devices enables the design of methods deriving road network cartographic information from drivers’ recorded traces. Some machine learning approaches have been proposed in the past to train automatic road network map inference, and recently this approach has been successfully extended to infer road attributes as well, such as speed limitation or number of lanes. In this paper, we address the problem of detecting traffic signals from a set of vehicle speed profiles, under a classification perspective. Each data instance is a speed versus distance plot depicting over a hundred profiles on a 100-m-long road span. We proposed three different ways of deriving features: The first one relies on the raw speed measurements; the second one uses image recognition techniques; and the third one is based on functional data analysis. We input them into most commonly used classification algorithms, and a comparative analysis demonstrated that a functional description of speed profiles with wavelet transforms seems to outperform the other approaches with most of the tested classifiers. It also highlighted that random forests yield an accurate detection of traffic signals, regardless of the chosen feature extraction method, while keeping a remarkably low confusion rate with stop signs. Numéro de notice : A2019-497 Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41060-019-00197-x date de publication en ligne : 04/10/2019 En ligne : https://doi.org/10.1007/s41060-019-00197-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93755
in International Journal of Data Science and Analytics JDSA > vol inconnu [01/10/2019][article]Accuracy assessment of speed values calculated from GNSS tracks of roads obtained from VGI / Antonio Tomás Mozas-Calvache in Survey review, vol 51 n° 367 (July 2019)
![]()
[article]
Titre : Accuracy assessment of speed values calculated from GNSS tracks of roads obtained from VGI Type de document : Article/Communication Auteurs : Antonio Tomás Mozas-Calvache, Auteur Année de publication : 2019 Article en page(s) : pp 354 - 363 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes descripteurs IGN] autoroute
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] positionnement différentiel
[Termes descripteurs IGN] trace GPS
[Termes descripteurs IGN] vitesseRésumé : (Auteur) This study describes the results of an assessment of the accuracy of relative measures between two points, and more specifically of speed values, obtained from Global Positioning Satellite Systems (GNSS) tracks acquired by contributors of Volunteered Geographic Information (VGI). The VGI does not usually include information about the positional accuracy of the trackpoints neither of speed values derived from these positions. Consequently, the assessment is based on a field test that consisted of a vehicle which travelled a highway with a set of Global Positioning System (GPS) devices like those commonly used by VGI contributors. These devices captured positions of trackpoints with a time interval of 1 second. Additionally, a more accurate geodetic RTK–GNSS receptor controlled these positions. The paper describes the methodology employed, taking into account several parameters such as the acquisition time interval, the accuracy of control positions, etc. The results have demonstrated the viability of the methodology applied, the possible use of VGI in order to determine the speed values of the trackpoints and the possible improvement in the accuracy achieved with the increase of the distance between trackpoints (and as a consequence of time interval), but with the disadvantage of a reduction in the quantity of trackpoints. Thus, several values of time intervals have been suggested, considering the accuracy required. Numéro de notice : A2019-363 Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2018.1460069 date de publication en ligne : 16/04/2018 En ligne : https://doi.org/10.1080/00396265.2018.1460069 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93443
in Survey review > vol 51 n° 367 (July 2019) . - pp 354 - 363[article]Convolutional neural network for traffic signal inference based on GPS traces / Yann Méneroux (2018)
![]()
contenu dans Spatial big data and machine learning in GIScience, Workshop at GIScience 2018, Melbourne, Australia, 28 August 2018 / Martin Raubal (2018)![]()
Titre : Convolutional neural network for traffic signal inference based on GPS traces Type de document : Article/Communication Auteurs : Yann Méneroux , Auteur ; V. Dizier, Auteur ; Mathieu Margollé, Auteur ; Marie-Dominique Van Damme
, Auteur ; Hiroshi Kanasugi, Auteur ; Arnaud Le Guilcher
, Auteur ; Guillaume Saint Pierre, Auteur ; Yugo Kato, Auteur
Congrès : Workshop Spatial big data and machine learning (28 aout 2018; Melbourne, Australie), Commanditaire Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2018 Projets : 1-Pas de projet / Importance : pp 9 - 12 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] données maillées
[Termes descripteurs IGN] réseau neuronal convolutif
[Termes descripteurs IGN] trace GPS
[Termes descripteurs IGN] trafic routier
[Termes descripteurs IGN] traitement de données localiséesRésumé : (auteur) Map inference techniques aim at using GPS trajectories collected from a fleet of vehicles, to infer geographic information and enrich road map databases. In this paper, we investigate whether a Convolutional Neural Network can detect traffic signals on a raster map of features computed from a large dataset of GPS traces. Experimentation revealed that our model is able to capture traffic signal pattern signature on this very specific case of unnatural input images. Performance indices are encouraging but need to be improved through a more refined tuning of the workflow. Numéro de notice : C2018-053 Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91340 Documents numériques
en open access
CNN for traffic signal inference ... - pdf éditeurAdobe Acrobat PDFDetection and localization of traffic signals with GPS floating car data and Random Forest / Yann Méneroux (2018)
![]()
PermalinkUnveiling movement uncertainty for robust trajectory similarity analysis / Andre Salvaro Furtado in International journal of geographical information science IJGIS, vol 32 n° 1-2 (January - February 2018)
PermalinkAn analysis of movement patterns between zones using taxi GPS data / Zhanlong Chen in Transactions in GIS, vol 21 n° 6 (December 2017)
PermalinkExtracting spatial patterns in bicycle routes from crowdsourced data / Jody Sultan in Transactions in GIS, vol 21 n° 6 (December 2017)
PermalinkSpatiotemporal model for assessing the stability of urban human convergence and divergence patterns / Zhixiang Fang in International journal of geographical information science IJGIS, vol 31 n° 11-12 (November - December 2017)
PermalinkAn iterative method for obtaining a mean 3D axis from a set of GNSS traces for use in positional controls / A. Mozas-Calvache in Survey review, vol 49 n° 355 (October 2017)
PermalinkCrowdsourcing a cyclist perspective on suggested recreational paths in real-world networks / Kevin Baker in Cartography and Geographic Information Science, Vol 44 n° 5 (September 2017)
PermalinkDepicting urban boundaries from a mobility network of spatial interactions : a case study of Great Britain with geo-located Twitter data / Junjun Yin in International journal of geographical information science IJGIS, vol 31 n° 7-8 (July - August 2017)
PermalinkIndex-supported pattern matching on tuples of time-dependent values / Fabio Valdés in Geoinformatica [en ligne], vol 21 n° 3 (July - September 2017)
PermalinkMapping changes of residence with passive mobile positioning data : the case of Estonia / Pilleriine Kamenjuk in International journal of geographical information science IJGIS, vol 31 n° 7-8 (July - August 2017)
Permalink