Descripteur



Etendre la recherche sur niveau(x) vers le bas
Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach / Michał Romaszewski in ISPRS Journal of photogrammetry and remote sensing, vol 121 (November 2016)
![]()
[article]
Titre : Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach Type de document : Article/Communication Auteurs : Michał Romaszewski, Auteur ; Przemysław Głomb, Auteur ; Michał Cholewa, Auteur Année de publication : 2016 Article en page(s) : pp 60 – 76 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] performance
[Termes descripteurs IGN] Tracking-Learning-DetectionRésumé : (Auteur) We present a novel semi-supervised algorithm for classification of hyperspectral data from remote sensors. Our method is inspired by the Tracking-Learning-Detection (TLD) framework, originally applied for tracking objects in a video stream. TLD introduced the co-training approach called P-N learning, making use of two independent ‘experts’ (or learners) that scored samples in different feature spaces. In a similar fashion, we formulated the hyperspectral classification task as a co-training problem, that can be solved with the P-N learning scheme. Our method uses both spatial and spectral features of data, extending a small set of initial labelled samples during the process of region growing. We show that this approach is stable and achieves very good accuracy even for small training sets. We analyse the algorithm’s performance on several publicly available hyperspectral data sets. Numéro de notice : A2016--015 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.08.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83877
in ISPRS Journal of photogrammetry and remote sensing > vol 121 (November 2016) . - pp 60 – 76[article]