Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > distribution, loi de > entropie maximale
entropie maximale |
Documents disponibles dans cette catégorie (16)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal / Cristina Alegria in Forests, vol 14 n° 3 (March 2023)
[article]
Titre : Species distribution modelling under climate change scenarios for maritime pine (Pinus pinaster Aiton) in Portugal Type de document : Article/Communication Auteurs : Cristina Alegria, Auteur ; Alice M. Almeida, Auteur ; Natalia Roque, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 591 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distribution spatiale
[Termes IGN] entropie maximale
[Termes IGN] gestion forestière
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] Pinus pinaster
[Termes IGN] Portugal
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) To date, a variety of species potential distribution mapping approaches have been used, and the agreement in maps produced with different methodological approaches should be assessed. The aims of this study were: (1) to model Maritime pine potential distributions for the present and for the future under two climate change scenarios using the machine learning Maximum Entropy algorithm (MaxEnt); (2) to update the species ecological envelope maps using the same environmental data set and climate change scenarios; and (3) to perform an agreement analysis for the species distribution maps produced with both methodological approaches. The species distribution maps produced by each of the methodological approaches under study were reclassified into presence–absence binary maps of species to perform the agreement analysis. The results showed that the MaxEnt-predicted map for the present matched well the species’ current distribution, but the species ecological envelope map, also for the present, was closer to the species’ empiric potential distribution. Climate change impacts on the species’ future distributions maps using the MaxEnt were moderate, but areas were relocated. The 47.3% suitability area (regular-medium-high), in the present, increased in future climate change scenarios to 48.7%–48.3%. Conversely, the impacts in species ecological envelopes maps were higher and with greater future losses than the latter. The 76.5% suitability area (regular-favourable-optimum), in the present, decreased in future climate change scenarios to 58.2%–51.6%. The two approaches combination resulted in a 44% concordance for the species occupancy in the present, decreasing around 30%–35% in the future under the climate change scenarios. Both methodologies proved to be complementary to set species’ best suitability areas, which are key as support decision tools for planning afforestation and forest management to attain fire-resilient landscapes, enhanced forest ecosystems biodiversity, functionality and productivity. Numéro de notice : A2023-167 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14030591 Date de publication en ligne : 16/03/2023 En ligne : https://doi.org/10.3390/f14030591 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102904
in Forests > vol 14 n° 3 (March 2023) . - n° 591[article]Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods / Bin Zhang in GIScience and remote sensing, vol 59 n° 1 (2022)
[article]
Titre : Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods Type de document : Article/Communication Auteurs : Bin Zhang, Auteur ; Haijun Wang, Auteur Année de publication : 2022 Article en page(s) : pp 71 - 95 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] automate cellulaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] entropie maximale
[Termes IGN] modèle de simulation
[Termes IGN] paysage urbain
[Termes IGN] Pékin (Chine)
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)Résumé : (auteur) As a powerful predictive technique based on machine learning, the maximum entropy (MaxEnt) model has been widely used in geographic modeling. However, its performance in calibrating cellular automata (CA) for urban growth simulation has not been investigated. This study compares the MaxEnt model with logistic regression (LR), artificial neural network (ANN), and support vector machine (SVM) models to explore its advantages in simulating urban growth and interpreting driving mechanisms. With the land use data of 2000 and 2020 from GlobeLand30, the constructed LR-CA, ANN-CA, SVM-CA, and MaxEnt-CA models are applied to simulate the urban growth of Beijing, Tianjin, and Wuhan, respectively. Their performance has been evaluated from multiple aspects such as the accuracy of training, testing, and projecting, computational efficiency, simulation accuracy, and simulated urban landscape. The results indicate that the MaxEnt model is superior to the other models except for the computational efficiency, but the time required for the MaxEnt training and projecting is acceptable and far less than that of the SVM. Taking the LR-CA as the benchmark, the kappa coefficients (Kappa) of the MaxEnt-CA have been increased by 4.20%, 3.38%, and 5.87% in Beijing, Tianjin, and Wuhan, respectively; the increments of corresponding figure of merits (FoM) are 6.26%, 4.58%, and 8.49%. The driving mechanisms of urban growth such as the interactions, response curves, and importance of spatial variables, have also been revealed by the MaxEnt modeling. The driving mechanisms of urban growth in Tianjin are more complex than that in Beijing and Wuhan, because there are more variable interactions; the relationships between spatial factors and urban growth in the three study areas are all nonlinear; the topographic factors and city center of Beijing, the traffic factors and water bodies of Tianjin, and the traffic factors, city center and water bodies of Wuhan are significant factors affecting their urban growth. Numéro de notice : A2022-130 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/15481603.2021.2016240 Date de publication en ligne : 30/12/2021 En ligne : https://doi.org/10.1080/15481603.2021.2016240 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99715
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 71 - 95[article]Role of maximum entropy and citizen science to study habitat suitability of jacobin cuckoo in different climate change scenarios / Priyinka Singh in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
[article]
Titre : Role of maximum entropy and citizen science to study habitat suitability of jacobin cuckoo in different climate change scenarios Type de document : Article/Communication Auteurs : Priyinka Singh, Auteur ; Sameer Saran, Auteur ; Sultan Kocaman, Auteur Année de publication : 2021 Article en page(s) : n° 463 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] Aves
[Termes IGN] changement climatique
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] entropie maximale
[Termes IGN] habitat animal
[Termes IGN] migration animale
[Termes IGN] mousson
[Termes IGN] science citoyenneRésumé : (auteur) Recent advancements in spatial modelling and mapping methods have opened up new horizons for monitoring the migration of bird species, which have been altered due to the climate change. The rise of citizen science has also aided the spatiotemporal data collection with associated attributes. The biodiversity data from citizen observatories can be employed in machine learning algorithms for predicting suitable environmental conditions for species’ survival and their future migration behaviours. In this study, different environmental variables effective in birds’ migrations were analysed, and their habitat suitability was assessed for future understanding of their responses in different climate change scenarios. The Jacobin cuckoo (Clamator jacobinus) was selected as the subject species, since their arrival to India has been traditionally considered as a sign for the start of the Indian monsoon season. For suitability predictions in current and future scenarios, maximum entropy (Maxent) modelling was carried out with environmental variables and species occurrences observed in India and Africa. For modelling, the correlation test was performed on the environmental variables (bioclimatic, precipitation, minimum temperature, maximum temperature, precipitation, wind and elevation). The results showed that precipitation-related variables played a significant role in suitability, and through reclassified habitat suitability maps, it was observed that the suitable areas of India and Africa might decrease in future climatic scenarios (SSPs 2.6, 4.5, 7.0 and 8.5) of 2030 and 2050. In addition, the suitability and unsuitability areas were calculated (in km2) to observe the subtle changes in the ecosystem. Such climate change studies can support biodiversity research and improve the agricultural economy. Numéro de notice : A2021-545 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070463 Date de publication en ligne : 06/07/2021 En ligne : https://doi.org/10.3390/ijgi10070463 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98046
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 463[article]Space-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach / Bisong Hu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
[article]
Titre : Space-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach Type de document : Article/Communication Auteurs : Bisong Hu, Auteur ; Pan Ning, Auteur ; Yi Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 466 - 489 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] carte sanitaire
[Termes IGN] Chine
[Termes IGN] entropie maximale
[Termes IGN] filtre de Kalman
[Termes IGN] géostatistique
[Termes IGN] modèle dynamique
[Termes IGN] régressionRésumé : (auteur) In this work, a synthesis of the Bayesian maximum entropy (BME) and the Kalman filter (KF) methods, which enhances their individual strengths and overcomes certain of their weaknesses for spatiotemporal mapping purposes, is proposed in a spatiotemporal disease mapping context. The proposed BME-Kalman synthesis allows BME to use information from both parametric regression modeling and KF estimation leading to enhanced knowledge bases. The BME-Kalman synthetic approach is used to study the space-time incidence mapping of the hand, foot and mouth disease (HFMD) in Shandong province (China) during the period May 1st, 2008 to March 19th, 2009. The results showed that the BME-Kalman approach exhibited very good regressive and predictive accuracies, maintained a very good performance even during low-incidence and extremely low-incidence periods, offered an improved description of hierarchical disease characteristics compared to traditional mapping techniques, and provided a clear explanation of the spatial stratified incidence heterogeneity at unsampled locations. The BME-Kalman approach is versatile and flexible so that it can be modified and adjusted according to the needs of the application. Numéro de notice : A2021-165 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1795177 Date de publication en ligne : 22/07/2021 En ligne : https://doi.org/10.1080/13658816.2020.1795177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97098
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 466 - 489[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021031 SL Revue Centre de documentation Revues en salle Disponible Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB / Mahya Norallahi in Natural Hazards, vol 106 n° 1 (March 2021)
[article]
Titre : Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB Type de document : Article/Communication Auteurs : Mahya Norallahi, Auteur ; Hesam Seyed Kaboli, Auteur Année de publication : 2021 Article en page(s) : pp119 - 137 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage automatique
[Termes IGN] cartographie des risques
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] entropie maximale
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] zone urbaineRésumé : (auteur) Rapid urban development, increasing impermeable surfaces, poor drainage system and changes in extreme precipitations are the most important factors that nowadays lead to increased urban flooding and it has become an urban problem. Urban flood mapping and its use in making an urban development plan can reduce flood damages and losses. Constantly producing urban flood hazard maps using models that rely on the availability of detailed hydraulic-hydrological data is a major challenge especially in developing countries. In this study, urban flood hazard map was produced with limited data using three machine learning models: Genetic Algorithm Rule-Set Production, Maximum Entropy (MaxEnt), Random Forest (RF) and Naïve Bayes for Kermanshah city, Iran. The flood hazard predicting factors used in modeling were: slope, land use, precipitation, distance to river, distance to channel, curve number (CN) and elevation. Flood inventory map was produced based on available reports and field surveys, that 117 flooded points and 163 non-flooded points were identified. Models performance was evaluated based on area under the receiver-operator characteristic curve (AUC-ROC), Kappa statistic and hits and miss analysis. The results show that RF model (AUC-ROC = 99.5%, Kappa = 98%, Accuracy = 90%, Success ratio = 99%, Threat score = 90% and Heidke skill score = 98%) performed better than other models. The results also showed that distance to canal, land use and CN have shown more contribution among others for modeling the flood and precipitation had the least effect among other factors. The findings show that machine learning methods can be a good alternative to distributed models to predict urban flood-prone areas where there are lack of detailed hydraulic and hydrological data. Numéro de notice : A2021-418 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-020-04453-3 Date de publication en ligne : 04/01/2021 En ligne : https://doi.org/10.1007/s11069-020-04453-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97768
in Natural Hazards > vol 106 n° 1 (March 2021) . - pp119 - 137[article]PermalinkPermalinkSpatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])PermalinkHow do species and data characteristics affect species distribution models and when to use environmental filtering? / Lukáš Gábor in International journal of geographical information science IJGIS, vol 34 n° 8 (August 2020)PermalinkLandslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])PermalinkCombining land cover products using a minimum divergence and a Bayesian data fusion approach / Sarah Gengler in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)PermalinkDevelopment and Comparison of Species Distribution Models for Forest Inventories / Óscar Rodríguez de Rivera in ISPRS International journal of geo-information, vol 6 n° 6 (June 2017)PermalinkClimatic niche breadth can explain variation in geographical range size of alpine and subalpine plants / Fangyuan Yu in International journal of geographical information science IJGIS, vol 31 n° 1-2 (January - February 2017)PermalinkPermalinkImpacts of species misidentification on species distribution modeling with presence-only data / Hugo Costa in ISPRS International journal of geo-information, vol 4 n°4 (December 2015)Permalink