Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > probabilités > distribution, loi de > entropie maximale
entropie maximale |



Etendre la recherche sur niveau(x) vers le bas
Space-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach / Bisong Hu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
![]()
[article]
Titre : Space-time disease mapping by combining Bayesian maximum entropy and Kalman filter: the BME-Kalman approach Type de document : Article/Communication Auteurs : Bisong Hu, Auteur ; Pan Ning, Auteur ; Yi Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 466 - 489 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] carte sanitaire
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] régressionRésumé : (auteur) In this work, a synthesis of the Bayesian maximum entropy (BME) and the Kalman filter (KF) methods, which enhances their individual strengths and overcomes certain of their weaknesses for spatiotemporal mapping purposes, is proposed in a spatiotemporal disease mapping context. The proposed BME-Kalman synthesis allows BME to use information from both parametric regression modeling and KF estimation leading to enhanced knowledge bases. The BME-Kalman synthetic approach is used to study the space-time incidence mapping of the hand, foot and mouth disease (HFMD) in Shandong province (China) during the period May 1st, 2008 to March 19th, 2009. The results showed that the BME-Kalman approach exhibited very good regressive and predictive accuracies, maintained a very good performance even during low-incidence and extremely low-incidence periods, offered an improved description of hierarchical disease characteristics compared to traditional mapping techniques, and provided a clear explanation of the spatial stratified incidence heterogeneity at unsampled locations. The BME-Kalman approach is versatile and flexible so that it can be modified and adjusted according to the needs of the application. Numéro de notice : A2021-165 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1795177 date de publication en ligne : 22/07/2021 En ligne : https://doi.org/10.1080/13658816.2020.1795177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97098
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 466 - 489[article]Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia Type de document : Article/Communication Auteurs : Meron Awoke Eshetae, Auteur ; Binyam Tesfaw Hailu, Auteur ; Sebsebe Demissew, Auteur Année de publication : 2021 Article en page(s) : pp 60 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Ethiopie
[Termes descripteurs IGN] Musa (genre)
[Termes descripteurs IGN] surface cultivéeRésumé : (Auteur) Enset (Ensete ventricosum) feeds around 20 million people in Ethiopia and is arguably the most important crop for food security and rural livelihoods in the country. Therefore, it is significant to know its spatial characterization and distribution in the country. We use spatial overlay analysis and the maximum entropy (MaxEnt) model for characterizing and modelling, respectively. Inputs for the model include 26 environmental variables—19 bioclimatic and seven biophysical—in addition to the geospatial location of enset field data. The model result was validated using Receiver Operating Characteristic curve method and the area under the curve (AUC) with 0.842 for cultivated enset and 0.760 (wild enset). The highest prediction (>0.5) of both varieties occurred in the southwestern, south-central and north-eastern parts of Ethiopia—17,293.67 km2 (cultivated) and 40,402 km2 (wild) area. The presence of both enset is probabilistically higher at the tropic-cool/sub-humid Agroecological Zones. Numéro de notice : A2021-051 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1588392 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1588392 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96773
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 60 - 75[article]How do species and data characteristics affect species distribution models and when to use environmental filtering? / Lukáš Gábor in International journal of geographical information science IJGIS, vol 34 n° 8 (August 2020)
![]()
[article]
Titre : How do species and data characteristics affect species distribution models and when to use environmental filtering? Type de document : Article/Communication Auteurs : Lukáš Gábor, Auteur ; Vítězslav Moudrý, Auteur ; Vojtěch Barták, Auteur ; Vincent Lecours, Auteur Année de publication : 2020 Article en page(s) : pp 1567 - 1584 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] échantillonnage (statistique)
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] erreur d'échantillon
[Termes descripteurs IGN] filtrage d'information
[Termes descripteurs IGN] interaction spatialeRésumé : (auteur) Species distribution models (SDMs) are widely used in ecology and conservation. However, their performance is known to be affected by a variety of factors related to species occurrence characteristics. In this study, we used a virtual species approach to overcome the difficulties associated with testing of combined effects of those factors on performance of presence-only SDMs when using real data. We focused on the individual and combined roles of factors related to response variable (i.e. sample size, sampling bias, environmental filtering, species prevalence, and species response to environmental gradients). Results suggest that environmental filtering is not necessarily helpful and should not be performed blindly, without evidence of bias in species occurrences. The more gradual the species response to environmental gradients is, the greater is the model sensitivity to an inappropriate use of environmental filtering, although this sensitivity decreases with higher species prevalence. Results show that SDMs are affected to the greatest degree by the species response to environmental gradients, species prevalence, and sample size. Models’ accuracy decreased with sample size below 300 presences. Furthermore, a high level of interactions among individual factors was observed. Ignoring the combined effects of factors may lead to misleading outcomes and conclusions. Numéro de notice : A2020-414 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1615070 date de publication en ligne : 14/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1615070 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95465
in International journal of geographical information science IJGIS > vol 34 n° 8 (August 2020) . - pp 1567 - 1584[article]Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])
![]()
[article]
Titre : Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya Type de document : Article/Communication Auteurs : Vijendra Kumar Pandey, Auteur ; Hamid Reza Pourghasemi, Auteur ; Milap Chand Sharma, Auteur Année de publication : 2020 Article en page(s) : pp 168 - 187 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autoroute
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Himalaya
[Termes descripteurs IGN] image IRS-LISS
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] Linear Imaging Self-Scanning System
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] mousson
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] séparateur à vaste marge
[Termes descripteurs IGN] test statistiqueRésumé : (Auteur) The main objective of this study to produce landslide susceptibility zones using maximum entropy (MaxEnt) and support vector machine (SVM) data-driven models along the Tipari to Ghuttu highway corridors in the Garhwal Himalaya. A landslide inventory has been prepared through field surveys and LISS-IV and Landsat 8 satellite images. The datasets of 85 landslides were categorised into training and test sets. In this study 11 landslide conditioning variables were used that are; altitude, slope angle, aspect, plan curvature, topographic wetness index, normalised difference vegetation index (NDVI), land use, soil texture, distance to rivers, distance to faults, and distance to the road. The result produced using MaxEnt and SVM model were subsequently validated using receiver operating characteristics curve (ROC) with test sets of landslide dataset. Both the models have good prediction capabilities. MaxEnt has ROC value of 0.78 while SVM has the highest prediction rate of 0.85. Numéro de notice : A2020-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1510038 date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1510038 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94519
in Geocarto international > vol 35 n° 2 [01/02/2020] . - pp 168 - 187[article]Combining land cover products using a minimum divergence and a Bayesian data fusion approach / Sarah Gengler in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)
![]()
[article]
Titre : Combining land cover products using a minimum divergence and a Bayesian data fusion approach Type de document : Article/Communication Auteurs : Sarah Gengler, Auteur ; Patrick Bogaert, Auteur Année de publication : 2018 Article en page(s) : pp 806 - 826 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] Belgique
[Termes descripteurs IGN] carte d'occupation du sol
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] distance de Kullback-Leibler
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] entropie relative
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] source de donnéesRésumé : (Auteur) Land cover mapping plays an important role for a wide spectrum of applications that are ranging from climate modeling to food security. However, it is a common case that several and partially conflicting land cover products are available at the same time over a same area, where each product suffers from specific limitations and lack of accuracy. In order to take advantage of the best features of each product while at the same time attenuating their respective weaknesses, this paper is proposing a methodology that allows the user to combine these products together based on a general framework involving maximum entropy/minimum divergence principles, Bayesian data fusion and Bayesian updating. First, information brought by each land cover product is coded in terms of inequality constraints so that a first estimation of their quality can be computed based on a maximum entropy/minimum divergence principle. Information from these various land cover products can then be fused afterwards in a Bayesian framework, leading to a single map with an associated measure of uncertainty. Finally, it is shown how the additional information brought by control data can help improving this fused map through a Bayesian updating procedure. The first part of the paper is briefly presenting the most important theoretical results, while the second part is illustrating the use of this suggested approach for a specific area in Belgium, where five different land cover products are at hand. The benefits and limitations of this approach are finally discussed by the light of the results for this case study. Numéro de notice : A2018-045 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2017.1413577 En ligne : https://doi.org/10.1080/13658816.2017.1413577 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89267
in International journal of geographical information science IJGIS > vol 32 n° 3-4 (March - April 2018) . - pp 806 - 826[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2018022 RAB Revue Centre de documentation En réserve 3L Disponible 079-2018021 RAB Revue Centre de documentation En réserve 3L Disponible Development and Comparison of Species Distribution Models for Forest Inventories / Óscar Rodríguez de Rivera in ISPRS International journal of geo-information, vol 6 n° 6 (June 2017)
PermalinkClimatic niche breadth can explain variation in geographical range size of alpine and subalpine plants / Fangyuan Yu in International journal of geographical information science IJGIS, vol 31 n° 1-2 (January - February 2017)
PermalinkPermalinkAn entropy-based multispectral image classification algorithm / Di Long in IEEE Transactions on geoscience and remote sensing, vol 51 n° 12 (December 2013)
Permalink