Descripteur
Termes IGN > imagerie
imagerie
Commentaire :
Terme regroupant photographies et images issues de différents capteurs.
|
Documents disponibles dans cette catégorie (8480)


Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science [en ligne], vol 79 n° 1 (December 2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science [en ligne] > vol 79 n° 1 (December 2022) . - n° 2[article]Attention mechanisms in computer vision: A survey / Meng-Hao Guo in Computational Visual Media, vol 8 n° 3 (September 2022)
![]()
[article]
Titre : Attention mechanisms in computer vision: A survey Type de document : Article/Communication Auteurs : Meng-Hao Guo, Auteur ; Tian-Xing Xu, Auteur ; Jiang-Jiang Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 331 - 368 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] saillance
[Termes IGN] scèneRésumé : (auteur) Humans can naturally and effectively find salient regions in complex scenes. Motivated by this observation, attention mechanisms were introduced into computer vision with the aim of imitating this aspect of the human visual system. Such an attention mechanism can be regarded as a dynamic weight adjustment process based on features of the input image. Attention mechanisms have achieved great success in many visual tasks, including image classification, object detection, semantic segmentation, video understanding, image generation, 3D vision, multimodal tasks, and self-supervised learning. In this survey, we provide a comprehensive review of various attention mechanisms in computer vision and categorize them according to approach, such as channel attention, spatial attention, temporal attention, and branch attention; a related repository https://github.com/MenghaoGuo/Awesome-Vision-Attentions is dedicated to collecting related work. We also suggest future directions for attention mechanism research. Numéro de notice : A2022-329 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s41095-022-0271-y Date de publication en ligne : 15/03/2022 En ligne : https://doi.org/10.1007/s41095-022-0271-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100601
in Computational Visual Media > vol 8 n° 3 (September 2022) . - pp 331 - 368[article]Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network / Alex David Singleton in Computers, Environment and Urban Systems, vol 95 (July 2022)
![]()
[article]
Titre : Estimating generalized measures of local neighbourhood context from multispectral satellite images using a convolutional neural network Type de document : Article/Communication Auteurs : Alex David Singleton, Auteur ; Dani Arribas-Bel, Auteur ; John Murray, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101802 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Grande-Bretagne
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] morphologie urbaine
[Termes IGN] pondération
[Termes IGN] processeur graphiqueRésumé : (auteur) The increased availability of high-resolution multispectral imagery captured by remote sensing platforms provides new opportunities for the characterisation and differentiation of urban context. The discovery of generalized latent representations from such data are however under researched within the social sciences. As such, this paper exploits advances in machine learning to implement a new method of capturing measures of urban context from multispectral satellite imagery at a very small area level through the application of a convolutional autoencoder (CAE). The utility of outputs from the CAE is enhanced through the application of spatial weighting, and the smoothed outputs are then summarised using cluster analysis to generate a typology comprising seven groups describing salient patterns of differentiated urban context. The limits of the technique are discussed with reference to the resolution of the satellite data utilised within the study and the interaction between the geography of the input data and the learned structure. The method is implemented within the context of Great Britain, however, is applicable to any location where similar high resolution multispectral imagery are available. Numéro de notice : A2022-370 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101802 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100606
in Computers, Environment and Urban Systems > vol 95 (July 2022) . - n° 101802[article]Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background / Shiqi Miao in Sustainable Cities and Society, vol 82 (July 2022)
![]()
[article]
Titre : Heat wave-induced augmentation of surface urban heat islands strongly regulated by rural background Type de document : Article/Communication Auteurs : Shiqi Miao, Auteur ; Wenfeng Zhan, Auteur ; Jiameng Lai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103874 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] Chine
[Termes IGN] climat tropical
[Termes IGN] couvert végétal
[Termes IGN] densité de la végétation
[Termes IGN] données environnementales
[Termes IGN] forêt
[Termes IGN] humidité de l'air
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] nuit
[Termes IGN] température au sol
[Termes IGN] zone humide
[Termes IGN] zone ruraleRésumé : (auteur) The impact of heat waves (HWs) on surface urban heat islands (SUHIs) has been widely studied, but the spatial pattern of SUHI responsiveness to HWs across various climates remains unclear, and the influence of HW intensity on SUHI responsiveness has not been systematically quantified. Using MODIS land surface temperature data, here we investigated the responsiveness of SUHI to HWs (quantified as ∆I) as well as its variations with HW intensity in 354 cities in seven climate zones across China. We find that during HW periods, the SUHI and surface urban cool island are augmented in the humid and arid regions of China, respectively. The inter-city heterogeneity in rural vegetation coverage accounts for such a spatial pattern. In eastern China, the ∆I peaks in the north subtropical climate (0.72 ± 0.54 K for daytime and 0.29 ± 0.23 K for the nighttime) probably for its specific rural farming method. With the intensification of HWs, the augmentation effect can be further enhanced for the north subtropical, warm temperate, and arid temperate climates during the day and for almost all the climates at night. These findings can help advance the understanding of the responsiveness of SUHI to extreme climatic events. Numéro de notice : A2022-375 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.103874 Date de publication en ligne : 13/04/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103874 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100624
in Sustainable Cities and Society > vol 82 (July 2022) . - n° 103874[article]Improving remote sensing classification: A deep-learning-assisted model / Tsimur Davydzenka in Computers & geosciences, vol 164 (July 2022)
![]()
[article]
Titre : Improving remote sensing classification: A deep-learning-assisted model Type de document : Article/Communication Auteurs : Tsimur Davydzenka, Auteur ; Pejman Tahmasebi, Auteur ; Mark Carroll, Auteur Année de publication : 2022 Article en page(s) : n° 105123 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image à haute résolution
[Termes IGN] modèle stochastique
[Termes IGN] précision de la classificationRésumé : (auteur) In many industries and applications, obtaining and classifying remote sensing imagery plays a crucial role. The accuracy of classification, in particular the machine learning methods, mainly depends on a multitude of factors, among which one of the most important ones is the amount of training data. Obtaining sufficient amounts of training data, however, can be very difficult or costly, and one must find alternative ways to improve the accuracy of predictions. To this end, a possible solution that we provide in this study is to use a stochastic method for producing variations of the training images that will retain the important class-wide features and thereby enrich the machine learning's “understanding” of the variabilities. As such, we applied a stochastic algorithm to produce additional realizations of the limited input imagery and thereby significantly increase the final overall accuracy in a deep learning method. We found that by enlarging the initial training set by additional realizations, we are able to consistently improve classification accuracy, compared with generic image augmentation approaches. The results of this study show that there is a great opportunity to increase the accuracy of predictions when enough data are not available. Numéro de notice : A2022-388 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105123 Date de publication en ligne : 29/04/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105123 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100672
in Computers & geosciences > vol 164 (July 2022) . - n° 105123[article]Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
PermalinkHow large-scale bark beetle infestations influence the protective effects of forest stands against avalanches: A case study in the Swiss Alps / Marion E. Caduff in Forest ecology and management, vol 514 (15 June 2022)
PermalinkDART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images / Yingjie Wang in Remote sensing of environment, vol 274 (June 2022)
PermalinkGraph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
PermalinkHyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion / Kun Li in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
PermalinkLarge-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
PermalinkSummarizing large scale 3D mesh for urban navigation / Imeen Ben Salah in Robotics and autonomous systems, vol 152 (June 2022)
PermalinkProjective multitexturing of current 3D city models and point clouds with many historical images / Maria Scarlleth Gomes de Castro in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-4-2022 (2022 edition)
PermalinkClassification of vegetation classes by using time series of Sentinel-2 images for large scale mapping in Cameroon / Hermann Tagne in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-3-2022 (2022 edition)
PermalinkDeep learning for the detection of early signs for forest damage based on satellite imagery / Dennis Wittich in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
Permalink