Descripteur
Termes descripteurs IGN > imagerie
imagerie
Commentaire :
Terme regroupant photographies et images issues de différents capteurs.
|


Etendre la recherche sur niveau(x) vers le bas
Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters / Quinten Vanhellemont in Remote sensing of environment, Vol 256 (April 2020)
![]()
[article]
Titre : Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters Type de document : Article/Communication Auteurs : Quinten Vanhellemont, Auteur ; Kevin Ruddick, Auteur Année de publication : 2021 Article en page(s) : n° 112284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Belgique
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] image Sentinel-OLCI
[Termes descripteurs IGN] littoral
[Termes descripteurs IGN] rayonnement infrarouge
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] turbidité des eauxRésumé : (auteur) The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17%), where their reflectances were also very close to the in situ observations (MARD 11%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license. Numéro de notice : A2021-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112284 date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97116
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112284[article]A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery Type de document : Article/Communication Auteurs : Lucas Prado Osco, Auteur ; Mauro Dos Santos de Arruda, Auteur ; Diogo Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] carte agricole
[Termes descripteurs IGN] Citrus sinensis
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] gestion durable
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] maïs (céréale)
[Termes descripteurs IGN] rendement agricoleRésumé : (auteur) Accurately mapping croplands is an important prerequisite for precision farming since it assists in field management, yield-prediction, and environmental management. Crops are sensitive to planting patterns and some have a limited capacity to compensate for gaps within a row. Optical imaging with sensors mounted on Unmanned Aerial Vehicles (UAV) is a cost-effective option for capturing images covering croplands nowadays. However, visual inspection of such images can be a challenging and biased task, specifically for detecting plants and rows on a one-step basis. Thus, developing an architecture capable of simultaneously extracting plant individually and plantation-rows from UAV-images is yet an important demand to support the management of agricultural systems. In this paper, we propose a novel deep learning method based on a Convolutional Neural Network (CNN) that simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations. The experimental setup was evaluated in (a) a cornfield (Zea mays L.) with different growth stages (i.e. recently planted and mature plants) and in a (b) Citrus orchard (Citrus Sinensis Pera). Both datasets characterize different plant density scenarios, in different locations, with different types of crops, and from different sensors and dates. This scheme was used to prove the robustness of the proposed approach, allowing a broader discussion of the method. A two-branch architecture was implemented in our CNN method, where the information obtained within the plantation-row is updated into the plant detection branch and retro-feed to the row branch; which are then refined by a Multi-Stage Refinement method. In the corn plantation datasets (with both growth phases – young and mature), our approach returned a mean absolute error (MAE) of 6.224 plants per image patch, a mean relative error (MRE) of 0.1038, precision and recall values of 0.856, and 0.905, respectively, and an F-measure equal to 0.876. These results were superior to the results from other deep networks (HRNet, Faster R-CNN, and RetinaNet) evaluated with the same task and dataset. For the plantation-row detection, our approach returned precision, recall, and F-measure scores of 0.913, 0.941, and 0.925, respectively. To test the robustness of our model with a different type of agriculture, we performed the same task in the citrus orchard dataset. It returned an MAE equal to 1.409 citrus-trees per patch, MRE of 0.0615, precision of 0.922, recall of 0.911, and F-measure of 0.965. For the citrus plantation-row detection, our approach resulted in precision, recall, and F-measure scores equal to 0.965, 0.970, and 0.964, respectively. The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops. The method proposed here may be applied to future decision-making models and could contribute to the sustainable management of agricultural systems. Numéro de notice : A2021-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.024 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97171
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 1 - 17[article]A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection des nuages
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] latitude
[Termes descripteurs IGN] longitude
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] neige
[Termes descripteurs IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 87 - 104[article]sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network Type de document : Article/Communication Auteurs : Jian Sun, Auteur ; Fangcao Xu, Auteur ; Guido Cervone, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] rayonnement solaire
[Termes descripteurs IGN] réflectivitéRésumé : (auteur) Atmospheric correction is an essential step in hyperspectral imaging and target detection from spectrometer remote sensing data. State-of-the-art atmospheric correction approaches either require extensive filed experiments or prior knowledge of atmospheric characteristics to improve the predicted accuracy, which are computational expensive and unsuitable for real time application. To take full advantages of remote sensing observation in quickly and reliably acquiring data for a large area, an automatic and efficient processing tool is required for atmospheric correction. In this paper, we propose a time-dependent neural network for automatic atmospheric correction and target detection using multi-scan hyperspectral data under different elevation angles. In addition to the total radiance, the collection day and time are also incorporated to improve the time-dependency of the network and represent the seasonal and diurnal characteristics of atmosphere and solar radiation. Results show that the proposed network has the capacity to accurately provide atmospheric characteristics and estimate precise reflectivity spectra with 95,72% averaged accuracy for different materials, including vegetation, sea ice, and ocean. Additional experiments are designed to investigate the network’s temporal dependency and performance on missing data. The error analysis confirms that our proposed network is capable of estimating atmospheric characteristics under both seasonally and diurnally varying environments and handling the influence of missing data. Both the predicted results and error analysis are promising and demonstrate that our network has the ability of providing accurate atmospheric correction and target detection in real time. Numéro de notice : A2021-208 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.007 date de publication en ligne : 24/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97186
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 117 - 131[article]Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine / Dong Liang in Remote sensing of environment, Vol 256 (April 2020)
![]()
[article]
Titre : Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine Type de document : Article/Communication Auteurs : Dong Liang, Auteur ; Huadong Guo, Auteur ; Lu Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112318 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] albedo
[Termes descripteurs IGN] Antarctique
[Termes descripteurs IGN] calotte glaciaire
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] coefficient de rétrodiffusion
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] fonte des glaces
[Termes descripteurs IGN] Google Earth Engine
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] montée du niveau de la mer
[Termes descripteurs IGN] série temporelleRésumé : (auteur) The Antarctic ice sheet is an important mass of glacier ice. It is particularly sensitive to climate change, and the flow of Antarctica's inland glaciers into the sea, accelerated by collapsing ice shelves, threatens global sea level rise. The amount of snowmelt on the surface of the ice sheet is an important metric for accurately assessing surface material loss and albedo change, which affect the stability of the ice sheet. This study proposes a framework for quickly extracting time-series freeze-thaw information at the continental scale and 40 m resolution by taking advantage of the huge amount of synthetic aperture radar (SAR) data acquired by Sentinel-1 satellites over the Antarctic, available for rapid processing on Google Earth Engine. Co-orbit normalization is used in the proposed framework to establish a unified standard of judgement by reducing the variations in the backscattering coefficient introduced by observation geometry, terrain fluctuations, and melt conditions between images acquired at different times. We implemented the framework to produce a massive dataset of both monthly freeze-thaw information over the Antarctic and higher temporal resolution freeze-thaw information for the Larsen C ice shelf from 2015 to 2019, with overall accuracies of 93% verified by a manual visual interpretation method and 84% evaluated from automatic weather station temperatures. Due to its effectiveness and robustness, the framework can be used to analyse the spatiotemporal distribution of snowmelt, the change in melt area, and anomalous melt events in Antarctica, especially those in Larsen C caused by foehn wind. Numéro de notice : A2021-194 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112318 date de publication en ligne : 10/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112318 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97117
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112318[article]Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
PermalinkBasin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery / Zifeng Wang in Remote sensing of environment, Vol 255 (March 2021)
PermalinkEarly detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)
PermalinkImproving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([15/03/2021])
PermalinkAssessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([01/03/2021])
PermalinkCharacterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkDamage detection using SAR coherence statistical analysis, application to Beirut, Lebanon / Tamer ElGharbawi in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkEnhanced trajectory estimation of mobile laser scanners using aerial images / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkPerformance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (March 2021)
PermalinkRobust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
PermalinkCoastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkComprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkCorrentropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkCrop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkDeep traffic light detection by overlaying synthetic context on arbitrary natural images / Jean Pablo Vieira de Mello in Computers and graphics, vol 94 n° 1 (February 2021)
PermalinkFully convolutional neural network for impervious surface segmentation in mixed urban environment / Joseph McGlinchy in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkGeo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkGTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkInfluence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle / Lucas Santos Santana in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkMonitoring the spatiotemporal dynamics of urban green space and Its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data / Yue Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkMultiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification / Zitong Wu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkOptimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam / Vu Anh Tuan in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkReclaimed-airport surface-deformation monitoring by improved permanent-scatterer interferometric synthetic-aperture radar: a case study of Shenzhen Bao'an international airport, China / Lu Miao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkSAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkSemi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
PermalinkSpruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkStudy of systematic bias in measuring surface deformation with SAR interferometry / Homa Ansari in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkTropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkMapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series / Misganu Debella-Gilo in Remote sensing, Vol 13 n° 2 (January 2021)
PermalinkUsing sentinel-2 images to estimate topography, tidal-stage lags and exposure periods over large intertidal areas / José P. Granadeiro in Remote sensing, Vol 13 n° 2 (January 2021)
PermalinkAleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkAn improved approach based on terrain-dependent mathematical models for georeferencing pushbroom satellite images / Behrooz Moradi in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
PermalinkDetermination of the under water position of objects by reflectorless total stations / Štefan Rákay in Survey review, vol 53 n°376 (January 2021)
PermalinkEvaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkExamining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkFrom local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 / Yousra Hamrouni in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkGeomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data / Yanping Wang in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
PermalinkGeospatial analysis of September, 2019 floods in the lower gangetic plains of Bihar using multi-temporal satellites and river gauge data / C.M. Bhatt in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
PermalinkHolographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test / Dong Feng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkHyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkImpact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkMask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors / Emilio Guirado in Sensors, vol 21 n° 1 (January 2021)
PermalinkMonitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkRetrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkA review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkSAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery / Marie Ballère in Remote sensing of environment, Vol 252 (January 2021)
PermalinkSteps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery / Debasish Chakraborty in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkStructure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring / Edoardo Grottoli in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkSuper-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkThe Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkThe potential of LiDAR and UAV-photogrammetric data analysis to interpret archaeological sites: A case study of Chun Castle in South-West England / Israa Kadhim in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
PermalinkThe use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkUnmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkMonitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas / Nadia Ouaadi in Remote sensing of environment, Vol 251 (15 December 2020)
PermalinkAnalysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkCharacterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkDeep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination / Frederik Hass in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
PermalinkPermalinkExploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal / Santa Pandit in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkHyperspectral band selection via optimal neighborhood reconstruction / Qi Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkMapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkMS-RRFSegNetMultiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds / Haifeng Luo in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkMultistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkNonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkA novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkParsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkPolarization of light reflected by grass: modeling using visible-sunlit areas / Bin Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)
PermalinkQuality assessment of photogrammetric methods - A workflow for reproducible UAS orthomosaics / Marvin Ludwig in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkRemote sensing in urban planning: Contributions towards ecologically sound policies? / Thilo Wellmann in Landscape and Urban Planning, vol 204 (December 2020)
PermalinkSemi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree / Shuang Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkThe utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland / Ranjith Gopalakrishnan in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkTowards online UAS‐based photogrammetric measurements for 3D metrology inspection / Fabiio Menna in Photogrammetric record, vol 35 n° 172 (December 2020)
PermalinkUnderstanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkUnsupervised deep joint segmentation of multitemporal high-resolution images / Sudipan Saha in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkVisualization of 3D property data and assessment of the impact of rendering attributes / Stefan Seipel in Journal of Geovisualization and Spatial Analysis, vol 4 n° 2 (December 2020)
PermalinkAnalyse de la déforestation dans la périphérie ouest de la réserve de biosphère du Dja au Cameroun, à partir d'une série multi-annuelle d'images Landsat / Eric Wilson Tegno Nguekam in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkCartographie des cultures dans le périmètre du Loukkos (Maroc) : apport de la télédétection radar et optique / Siham Acharki in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkDétection du changement de l'étalement urbain au bas-Sahara algérien : apport de la télédétection spatiale et des SIG, cas de la ville de Biskra (Algérie) / Assoule Dechaicha in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkForêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification / Aurélien N.G. Matsaguim in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkPermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkA deep learning framework for matching of SAR and optical imagery / Lloyd Haydn Hughes in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkDisplacement monitoring of upper Atbara dam based on time series InSAR / Q.Q. Wang in Survey review, vol 52 n° 375 (November 2020)
PermalinkA fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkFusion of sparse model based on randomly erased image for SAR occluded target recognition / Zhiqiang He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkA generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery / Niangang Jiao in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkGeostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier / Simone Baffelli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkHigh-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkIs field-measured tree height as reliable as believed – Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest / Luka Jurjević in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkLearning-based hyperspectral imagery compression through generative neural networks / Chubo Deng in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkMapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
Permalink