Descripteur
Termes descripteurs IGN > imagerie
imagerie
Commentaire :
Terme regroupant photographies et images issues de différents capteurs.
|


Etendre la recherche sur niveau(x) vers le bas
Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters / Quinten Vanhellemont in Remote sensing of environment, Vol 256 (April 2020)
![]()
[article]
Titre : Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters Type de document : Article/Communication Auteurs : Quinten Vanhellemont, Auteur ; Kevin Ruddick, Auteur Année de publication : 2021 Article en page(s) : n° 112284 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Belgique
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] image Sentinel-OLCI
[Termes descripteurs IGN] littoral
[Termes descripteurs IGN] rayonnement infrarouge
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] turbidité des eauxRésumé : (auteur) The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17%), where their reflectances were also very close to the in situ observations (MARD 11%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license. Numéro de notice : A2021-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112284 date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112284 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97116
in Remote sensing of environment > Vol 256 (April 2020) . - n° 112284[article]A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery Type de document : Article/Communication Auteurs : Lucas Prado Osco, Auteur ; Mauro Dos Santos de Arruda, Auteur ; Diogo Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] carte agricole
[Termes descripteurs IGN] Citrus sinensis
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] gestion durable
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] maïs (céréale)
[Termes descripteurs IGN] rendement agricoleRésumé : (auteur) Accurately mapping croplands is an important prerequisite for precision farming since it assists in field management, yield-prediction, and environmental management. Crops are sensitive to planting patterns and some have a limited capacity to compensate for gaps within a row. Optical imaging with sensors mounted on Unmanned Aerial Vehicles (UAV) is a cost-effective option for capturing images covering croplands nowadays. However, visual inspection of such images can be a challenging and biased task, specifically for detecting plants and rows on a one-step basis. Thus, developing an architecture capable of simultaneously extracting plant individually and plantation-rows from UAV-images is yet an important demand to support the management of agricultural systems. In this paper, we propose a novel deep learning method based on a Convolutional Neural Network (CNN) that simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations. The experimental setup was evaluated in (a) a cornfield (Zea mays L.) with different growth stages (i.e. recently planted and mature plants) and in a (b) Citrus orchard (Citrus Sinensis Pera). Both datasets characterize different plant density scenarios, in different locations, with different types of crops, and from different sensors and dates. This scheme was used to prove the robustness of the proposed approach, allowing a broader discussion of the method. A two-branch architecture was implemented in our CNN method, where the information obtained within the plantation-row is updated into the plant detection branch and retro-feed to the row branch; which are then refined by a Multi-Stage Refinement method. In the corn plantation datasets (with both growth phases – young and mature), our approach returned a mean absolute error (MAE) of 6.224 plants per image patch, a mean relative error (MRE) of 0.1038, precision and recall values of 0.856, and 0.905, respectively, and an F-measure equal to 0.876. These results were superior to the results from other deep networks (HRNet, Faster R-CNN, and RetinaNet) evaluated with the same task and dataset. For the plantation-row detection, our approach returned precision, recall, and F-measure scores of 0.913, 0.941, and 0.925, respectively. To test the robustness of our model with a different type of agriculture, we performed the same task in the citrus orchard dataset. It returned an MAE equal to 1.409 citrus-trees per patch, MRE of 0.0615, precision of 0.922, recall of 0.911, and F-measure of 0.965. For the citrus plantation-row detection, our approach resulted in precision, recall, and F-measure scores equal to 0.965, 0.970, and 0.964, respectively. The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops. The method proposed here may be applied to future decision-making models and could contribute to the sustainable management of agricultural systems. Numéro de notice : A2021-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.024 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97171
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 1 - 17[article]A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection / Xi Wu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : A geographic information-driven method and a new large scale dataset for remote sensing cloud/snow detection Type de document : Article/Communication Auteurs : Xi Wu, Auteur ; Zhenwei Shi, Auteur ; Zhengxia Zou, Auteur Année de publication : 2021 Article en page(s) : pp 87 - 104 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] altitude
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection des nuages
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] fusion de données
[Termes descripteurs IGN] image Gaofen
[Termes descripteurs IGN] information géographique
[Termes descripteurs IGN] latitude
[Termes descripteurs IGN] longitude
[Termes descripteurs IGN] modèle statistique
[Termes descripteurs IGN] neige
[Termes descripteurs IGN] Normalized Difference Snow IndexRésumé : (auteur) Geographic information such as the altitude, latitude, and longitude are common but fundamental meta-records in remote sensing image products. In this paper, it is shown that such a group of records provides important priors for cloud and snow detection in remote sensing imagery. The intuition comes from some common geographical knowledge, where many of them are important but are often overlooked. For example, it is generally known that snow is less likely to exist in low-latitude or low-altitude areas, and clouds in different geographic may have various visual appearances. Previous cloud and snow detection methods simply ignore the use of such information, and perform detection solely based on the image data (band reflectance). Due to the neglect of such priors, most of these methods are difficult to obtain satisfactory performance in complex scenarios (e.g., cloud-snow coexistence). In this paper, a novel neural network called “Geographic Information-driven Network (GeoInfoNet)” is proposed for cloud and snow detection. In addition to the use of the image data, the model integrates the geographic information at both training and detection phases. A “geographic information encoder” is specially designed, which encodes the altitude, latitude, and longitude of imagery to a set of auxiliary maps and then feeds them to the detection network. The proposed network can be trained in an end-to-end fashion with dense robust features extracted and fused. A new dataset called “Levir_CS” for cloud and snow detection is built, which contains 4,168 Gaofen-1 satellite images and corresponding geographical records, and is over 20× larger than other datasets in this field. On “Levir_CS”, experiments show that the method achieves 90.74% intersection over union of cloud and 78.26% intersection over union of snow. It outperforms other state of the art cloud and snow detection methods with a large margin. Feature visualizations also show that the method learns some important priors which is close to the common sense. The proposed dataset and the code of GeoInfoNet are available in https://github.com/permanentCH5/GeoInfoNet. Numéro de notice : A2021-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.023 date de publication en ligne : 22/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.023 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97187
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 87 - 104[article]sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network / Jian Sun in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
![]()
[article]
Titre : sing data usinAutomatic atmospheric correction for shortwave hyperspectral remote seng a time-dependent deep neural network Type de document : Article/Communication Auteurs : Jian Sun, Auteur ; Fangcao Xu, Auteur ; Guido Cervone, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 117 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] détection de cible
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] rayonnement solaire
[Termes descripteurs IGN] réflectivitéRésumé : (auteur) Atmospheric correction is an essential step in hyperspectral imaging and target detection from spectrometer remote sensing data. State-of-the-art atmospheric correction approaches either require extensive filed experiments or prior knowledge of atmospheric characteristics to improve the predicted accuracy, which are computational expensive and unsuitable for real time application. To take full advantages of remote sensing observation in quickly and reliably acquiring data for a large area, an automatic and efficient processing tool is required for atmospheric correction. In this paper, we propose a time-dependent neural network for automatic atmospheric correction and target detection using multi-scan hyperspectral data under different elevation angles. In addition to the total radiance, the collection day and time are also incorporated to improve the time-dependency of the network and represent the seasonal and diurnal characteristics of atmosphere and solar radiation. Results show that the proposed network has the capacity to accurately provide atmospheric characteristics and estimate precise reflectivity spectra with 95,72% averaged accuracy for different materials, including vegetation, sea ice, and ocean. Additional experiments are designed to investigate the network’s temporal dependency and performance on missing data. The error analysis confirms that our proposed network is capable of estimating atmospheric characteristics under both seasonally and diurnally varying environments and handling the influence of missing data. Both the predicted results and error analysis are promising and demonstrate that our network has the ability of providing accurate atmospheric correction and target detection in real time. Numéro de notice : A2021-208 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.02.007 date de publication en ligne : 24/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.02.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97186
in ISPRS Journal of photogrammetry and remote sensing > Vol 174 (April 2021) . - pp 117 - 131[article]Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands / Emmanuelle Vaudour in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
![]()
[article]
Titre : Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands Type de document : Article/Communication Auteurs : Emmanuelle Vaudour, Auteur ; Cécile Gomez, Auteur ; Philippe Lagacherie, Auteur Année de publication : 2021 Article en page(s) : n° 102277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] mosaïquage d'images
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] teneur en carbone
[Termes descripteurs IGN] terre arable
[Termes descripteurs IGN] Yvelines (78)Résumé : (auteur) The spatial assessment of soil organic carbon (SOC) is a major environmental challenge, notably for evaluating soil carbon stocks. Recent works have shown the capability of Sentinel-2 to predict SOC content over temperate agroecosystems characterized with annual crops. However, because spectral models are only applicable on bare soils, the mapping of SOC is often obtained on limited areas. A possible improvement for increasing the number of pixels on which SOC can be retrieved by inverting bare soil reflectance spectra, consists of using optical images acquired at several dates. This study compares different approaches of Sentinel–2 images temporal mosaicking to produce a composite multi-date bare soil image for predicting SOC content over agricultural topsoils. A first approach for temporal mosaicking was based on a per-pixel selection and was driven by soil surface characteristics: bare soil or dry bare soil with/without removing dry vegetation. A second approach for creating composite images was based on a per-date selection and driven either by the models performance from single-date, or by average soil surface indicators of bare soil or dry bare soil. To characterize soil surface, Sentinel-1 (S1)-derived soil moisture and/or spectral indices such as normalized difference vegetation index (NDVI), Normalized Burn Ratio 2 (NBR2), bare soil index (BSI) and a soil surface moisture index (S2WI) were used either separately or in combination. This study highlighted the following results: i) none of the temporal mosaic images improved model performance for SOC prediction compared to the best single-date image; ii) of the per-pixel approaches, temporal mosaics driven by the S1-derived moisture content, and to a lesser extent, by NBR2 index, outperformed the mosaic driven by the BSI index but they did not increase the bare soil area predicted; iii) of the per-date approaches, the best trade-off between predicted area and model performance was achieved from the temporal mosaic driven by the S1-derived moisture content (R2 ~ 0.5, RPD ~ 1.4, RMSE ~ 3.7 g.kg-1) which enabled to more than double (*2.44) the predicted area. This study suggests that a number of bare soil mosaics based on several indicators (moisture, bare soil, roughness…), preferably in combination, might maintain acceptable accuracies for SOC prediction whilst extending over larger areas than single-date images. Numéro de notice : A2021-238 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102277 date de publication en ligne : 14/12/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102277 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97258
in International journal of applied Earth observation and geoinformation > vol 96 (April 2021) . - n° 102277[article]Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine / Dong Liang in Remote sensing of environment, Vol 256 (April 2020)
PermalinkUsing a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, Vol 174 (April 2021)
PermalinkBasin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery / Zifeng Wang in Remote sensing of environment, Vol 255 (March 2021)
PermalinkEarly detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS) / Langning Huo in Remote sensing of environment, Vol 255 (March 2021)
Permalink3D change detection using adaptive thresholds based on local point cloud density / Dan Liu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkCharacterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkCluster-based empirical tropospheric corrections applied to InSAR time series analysis / Kyle Dennis Murray in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkDamage detection using SAR coherence statistical analysis, application to Beirut, Lebanon / Tamer ElGharbawi in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkDenoising Sentinel-1 extra-wide mode cross-polarization images over sea ice / Yan Sun in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkDetection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction / Xiaorui Song in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkEnhanced trajectory estimation of mobile laser scanners using aerial images / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkExtraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)
PermalinkImpact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions / Xin-Ming Zhu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkImproving the unsupervised mapping of riparian bugweed in commercial forest plantations using hyperspectral data and LiDAR / Kabir Peerbhay in Geocarto international, vol 36 n° 4 ([01/03/2021])
PermalinkIntegration of an InSAR and ANN for sinkhole susceptibility mapping: A case study from Kirikkale-Delice (Turkey) / Hakan Nefeslioglu in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkLearning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkPan-sharpening via multiscale dynamic convolutional neural network / Jianwen Hu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkPassive radar imaging of ship targets with GNSS signals of opportunity / Debora Pastina in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkPerformance evaluation of artificial neural networks for natural terrain classification / Perpetual Hope Akwensi in Applied geomatics, vol 13 n° 1 (March 2021)
PermalinkRadar measurements of snow depth over sea ice on an unmanned aerial vehicle / Adrian Eng-Choon Tan in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkRobust unsupervised small area change detection from SAR imagery using deep learning / Xinzheng Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
PermalinkSaline-soil deformation extraction based on an improved time-series InSAR approach / Wei Xiang in ISPRS International journal of geo-information, vol 10 n° 3 (March 2021)
PermalinkAssessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([15/02/2021])
PermalinkActivity recognition in residential spaces with Internet of things devices and thermal imaging / Kshirasagar Naik in Sensors, vol 21 n° 3 (February 2021)
PermalinkCoastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkComprehensive time-series analysis of bridge deformation using differential satellite radar interferometry based on Sentinel-1 / Matthias Schlögl in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkCorrentropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing / Xiaorun Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkCrop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control / Adolfo Lozano-Tello in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkDeep traffic light detection by overlaying synthetic context on arbitrary natural images / Jean Pablo Vieira de Mello in Computers and graphics, vol 94 n° 1 (February 2021)
PermalinkFully convolutional neural network for impervious surface segmentation in mixed urban environment / Joseph McGlinchy in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkGeo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkGTP-PNet: A residual learning network based on gradient transformation prior for pansharpening / Hao Zhang in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkInfluence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle / Lucas Santos Santana in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkMonitoring the spatiotemporal dynamics of urban green space and Its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data / Yue Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkMultiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification / Zitong Wu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkOptimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam / Vu Anh Tuan in European journal of remote sensing, vol 54 n° 1 (2021)
PermalinkReclaimed-airport surface-deformation monitoring by improved permanent-scatterer interferometric synthetic-aperture radar: a case study of Shenzhen Bao'an international airport, China / Lu Miao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)
PermalinkSAR image speckle reduction based on nonconvex hybrid total variation model / Yuli Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkSemi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
PermalinkSpruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery / Rajeev Bhattarai in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkStudy of systematic bias in measuring surface deformation with SAR interferometry / Homa Ansari in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
PermalinkTropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
PermalinkMapping seasonal agricultural land use types using deep learning on Sentinel-2 image time series / Misganu Debella-Gilo in Remote sensing, Vol 13 n° 2 (January 2021)
PermalinkUsing sentinel-2 images to estimate topography, tidal-stage lags and exposure periods over large intertidal areas / José P. Granadeiro in Remote sensing, Vol 13 n° 2 (January 2021)
PermalinkAleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis / Max Mehltretter in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkAn improved approach based on terrain-dependent mathematical models for georeferencing pushbroom satellite images / Behrooz Moradi in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
PermalinkDetermination of the under water position of objects by reflectorless total stations / Štefan Rákay in Survey review, vol 53 n°376 (January 2021)
PermalinkEvaluation of a neural network with uncertainty for detection of ice and water in SAR imagery / Nazanin Asadi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkExamining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping / Mthembeni Mngadi in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkFrom local to global: A transfer learning-based approach for mapping poplar plantations at national scale using Sentinel-2 / Yousra Hamrouni in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkGeomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data / Yanping Wang in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
PermalinkGeospatial analysis of September, 2019 floods in the lower gangetic plains of Bihar using multi-temporal satellites and river gauge data / C.M. Bhatt in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
PermalinkHolographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test / Dong Feng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkHyperspectral and multispectral image fusion via graph Laplacian-guided coupled tensor decomposition / Yuanyang Bu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkImpact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkMask R-CNN and OBIA fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors / Emilio Guirado in Sensors, vol 21 n° 1 (January 2021)
PermalinkMonitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkRetrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkA review of image fusion techniques for pan-sharpening of high-resolution satellite imagery / Farzaneh Dadrass Javan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkSAR data for tropical forest disturbance alerts in French Guiana: Benefit over optical imagery / Marie Ballère in Remote sensing of environment, Vol 252 (January 2021)
PermalinkSteps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery / Debasish Chakraborty in Geocarto international, vol 36 n° 1 ([01/01/2021])
PermalinkStructure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring / Edoardo Grottoli in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkSuper-resolution of VIIRS-measured ocean color products using deep convolutional neural network / Xiaoming Liu in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
PermalinkThe Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkThe potential of LiDAR and UAV-photogrammetric data analysis to interpret archaeological sites: A case study of Chun Castle in South-West England / Israa Kadhim in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
PermalinkThe use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkUnmixing-based Sentinel-2 downscaling for urban land cover mapping / Fei Xu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
PermalinkUrban construction waste with VHR remote sensing using multi-feature analysis and a hierarchical segmentation method / Qiang Chen in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkCNN-based tree species classification using high resolution RGB image data from automated UAV observations / Sebastian Egli in Remote sensing, vol 12 n° 23 (15 December 2020)
PermalinkMonitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas / Nadia Ouaadi in Remote sensing of environment, Vol 251 (15 December 2020)
PermalinkAnalysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (December 2020)
PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkCharacterizing the spatial and temporal variation of the land surface temperature hotspots in Wuhan from a local scale / Chen Yang in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkDeep learning for detecting and classifying ocean objects: application of YoloV3 for iceberg–ship discrimination / Frederik Hass in ISPRS International journal of geo-information, vol 9 n° 12 (December 2020)
PermalinkPermalinkExploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal / Santa Pandit in Geocarto international, vol 35 n° 16 ([01/12/2020])
PermalinkA framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkHyperspectral band selection via optimal neighborhood reconstruction / Qi Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkMapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkMS-RRFSegNetMultiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds / Haifeng Luo in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkMultistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkNonlocal graph convolutional networks for hyperspectral image classification / Lichao Mou in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkA novel intelligent classification method for urban green space based on high-resolution remote sensing images / Zhiyu Xu in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkParsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss / Xianwei Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkPolarization of light reflected by grass: modeling using visible-sunlit areas / Bin Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 12 (December 2020)
PermalinkQuality assessment of photogrammetric methods - A workflow for reproducible UAS orthomosaics / Marvin Ludwig in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkRemote sensing in urban planning: Contributions towards ecologically sound policies? / Thilo Wellmann in Landscape and Urban Planning, vol 204 (December 2020)
PermalinkSemi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree / Shuang Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkThe utility of fused airborne laser scanning and multispectral data for improved wind damage risk assessment over a managed forest landscape in Finland / Ranjith Gopalakrishnan in Annals of Forest Science [en ligne], vol 77 n° 4 (December 2020)
PermalinkTowards online UAS‐based photogrammetric measurements for 3D metrology inspection / Fabiio Menna in Photogrammetric record, vol 35 n° 172 (December 2020)
PermalinkUnderstanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection / Chandi Witharana in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkUnsupervised deep joint segmentation of multitemporal high-resolution images / Sudipan Saha in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
PermalinkVisualization of 3D property data and assessment of the impact of rendering attributes / Stefan Seipel in Journal of Geovisualization and Spatial Analysis, vol 4 n° 2 (December 2020)
PermalinkAnalyse de la déforestation dans la périphérie ouest de la réserve de biosphère du Dja au Cameroun, à partir d'une série multi-annuelle d'images Landsat / Eric Wilson Tegno Nguekam in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkCartographie des cultures dans le périmètre du Loukkos (Maroc) : apport de la télédétection radar et optique / Siham Acharki in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkDétection du changement de l'étalement urbain au bas-Sahara algérien : apport de la télédétection spatiale et des SIG, cas de la ville de Biskra (Algérie) / Assoule Dechaicha in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkForêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification / Aurélien N.G. Matsaguim in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
PermalinkPermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkA deep learning framework for matching of SAR and optical imagery / Lloyd Haydn Hughes in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkDisplacement monitoring of upper Atbara dam based on time series InSAR / Q.Q. Wang in Survey review, vol 52 n° 375 (November 2020)
PermalinkA fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkFusion of sparse model based on randomly erased image for SAR occluded target recognition / Zhiqiang He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkA generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery / Niangang Jiao in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkGeostatistical analysis and mitigation of the atmospheric phase screens in Ku-band terrestrial radar interferometric observations of an alpine glacier / Simone Baffelli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkHigh-resolution remote sensing image scene classification via key filter bank based on convolutional neural network / Fengpeng Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkIs field-measured tree height as reliable as believed – Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest / Luka Jurjević in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkLearning-based hyperspectral imagery compression through generative neural networks / Chubo Deng in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkMapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
PermalinkRiver ice segmentation with deep learning / Abhineet Singh in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkTopographic connection method for automated mapping of landslide inventories, study case: semi urban sub-basin from Monterrey, Northeast of México / Nelly L. Ramirez Serrato in Geocarto international, vol 35 n° 15 ([01/11/2020])
PermalinkVNIR-SWIR superspectral mineral mapping: An example from Cuprite, Nevada / Kathleen E. Johnson in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 11 (November 2020)
PermalinkDrought stress detection in juvenile oilseed rape using hyperspectral imaging with a focus on spectra variability / Wiktor R. Żelazny in Remote sensing, vol 12 n° 20 (October 2020)
PermalinkAssessing the effects of thinning on stem growth allocation of individual Scots pine trees / Ninni Saarinen in Forest ecology and management, vol 474 ([15/10/2020])
PermalinkMonitoring population dynamics in the Pearl River Delta from 2000 to 2010 / Sisi Yu in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkObject-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkTextural classification of remotely sensed images using multiresolution techniques / Rizwan Ahmed Ansari in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkTime series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data / Hemant Sahu in Geocarto international, vol 35 n° 14 ([15/10/2020])
Permalink3D hand mesh reconstruction from a monocular RGB image / Hao Peng in The Visual Computer, vol 36 n° 10 - 12 (October 2020)
PermalinkApplication of convolutional and recurrent neural networks for buried threat detection using ground penetrating radar data / Mahdi Moalla in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkChallenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco / El Mahdi El Khalk in Natural Hazards and Earth System Sciences, vol 20 n° 10 (October 2020)
PermalinkCombined InSAR and terrestrial structural monitoring of bridges / Sivasakthy Selvakumaran in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkComparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
PermalinkExploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution / Vitor Martins in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkA graph convolutional network model for evaluating potential congestion spots based on local urban built environments / Kun Qin in Transactions in GIS, Vol 24 n° 5 (October 2020)
PermalinkHierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkImpact of INSAT-3D/3DR radiance data assimilation in predicting tropical cyclone Titli over the bay of Bengal / Raghu Nadimpalli in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkMapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data / Yaotong Cai in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)
PermalinkMultiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkA novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification / Jing Lv in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
PermalinkA spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications / T. Chakraborty in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkSpatio-temporal relationship between land cover and land surface temperature in urban areas: A case study in Geneva and Paris / Xu Ge in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkUncertainty of forested wetland maps derived from aerial photography / Stephen P. Prisley in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
PermalinkWeighted spherical sampling of point clouds for forested scenes / Alex Fafard in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 10 (October 2020)
PermalinkWide-area near-real-time monitoring of tropical forest degradation and deforestation using Sentinel-1 / Dirk Hoekman in Remote sensing, vol 12 n° 19 (October 2020)
PermalinkBackground tropospheric delay in geosynchronous synthetic aperture radar / Dexin Li in Remote sensing, vol 12 n° 18 (September 2020)
PermalinkUse of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
PermalinkApplication of 30-meter global digital elevation models for compensating rational polynomial coefficients biases / Amin Alizadeh Naeini in Geocarto international, vol 35 n° 12 ([01/09/2020])
PermalinkApplication of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in Northern Japanese mixed-wood forests / Kyaw Thu Moe in Remote sensing, vol 12 n° 17 (September 2020)
PermalinkApplying multi-temporal Landsat satellite data and Markov-cellular automata to predict forest cover change and forest degradation of sundarban reserve forest, Bangladesh / Mohammad Emran Hasan in Forests, vol 11 n° 9 (September 2020)
PermalinkAssessing local trends in indicators of ecosystem services with a time series of forest resource maps / Matti Katila in Silva fennica, vol 54 n° 4 (September 2020)
PermalinkL-band SAR for estimating aboveground biomass of rubber plantation in Java Island, Indonesia / Bambang H Trisasongko in Geocarto international, vol 35 n° 12 ([01/09/2020])
PermalinkComparison of tree-based classification algorithms in mapping burned forest areas / Dilek Kucuk Matci in Geodetski vestnik, vol 64 n° 3 (September - November 2020)
PermalinkCrater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkCSVM architectures for pixel-wise object detection in high-resolution remote sensing images / Youyou Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkDeriving a frozen area fraction from Metop ASCAT backscatter based on Sentinel-1 / Helena Bergstedt in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkEvaluation of crop mapping on fragmented and complex slope farmlands through random forest and object-oriented analysis using unmanned aerial vehicles / Re-Yang Lee in Geocarto international, vol 35 n° 12 ([01/09/2020])
PermalinkHeliport detection using artificial neural networks / Emre Baseski in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkHomogeneous tree height derivation from tree crown delineation using Seeded Region Growing (SRG) segmentation / Muhamad Farid Ramli in Geo-spatial Information Science, vol 23 n° 3 (September 2020)
PermalinkHyperspectral unmixing using orthogonal sparse prior-based autoencoder with hyper-laplacian loss and data-driven outlier detection / Zeyang Dou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkIlluminating the spatio-temporal evolution of the 2008–2009 Qaidam earthquake sequence with the joint use of Insar time series and teleseismic data / Simon Daout in Remote sensing, vol 12 n° 17 (September 2020)
PermalinkLocal color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? / Istvan G. Lauko in Geo-spatial Information Science, vol 23 n° 3 (September 2020)
PermalinkMapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine / Aparna R. Phalke in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMapping quality prediction for RTK/PPK-equipped micro-drones operating in complex natural environment / Emmanuel Cledat in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkMonitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
PermalinkMultiscale supervised kernel dictionary learning for SAR target recognition / Lei Tao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkA novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images / Heng Lyu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkA novel deep learning instance segmentation model for automated marine oil spill detection / Shamsudeen Temitope Yekeen in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkPansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkPrecise extraction of citrus fruit trees from a Digital Surface Model using a unified strategy: detection, delineation, and clustering / Ali Ozgun Ok in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkSemi-automatic building extraction from WorldView-2 imagery using taguchi optimization / Hasan Tonbul in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkShip detection in SAR images via local contrast of Fisher vectors / Xueqian Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
PermalinkA spaceborne SAR-based procedure to support the detection of landslides / Giuseppe Esposito in Natural Hazards and Earth System Sciences, vol 20 n° 9 (September 2020)
PermalinkVehicle detection of multi-source remote sensing data using active fine-tuning network / Xin Wu in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkX-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data / Danfeng Hong in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkShoreline extraction from WorldView2 satellite data in the presence of foam pixels using multispectral classification method / Audrey Minghelli in Remote sensing, vol 12 n° 16 (August 2020)
PermalinkAccuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets / Lamin R. Mansaray in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkCan ensemble techniques improve coral reef habitat classification accuracy using multispectral data? / Mohammad Shawkat Hossain in Geocarto international, vol 35 n° 11 ([01/08/2020])
PermalinkCan SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkCNN semantic segmentation to retrieve past land cover out of historical orthoimages and DSM: first experiments / Arnaud Le Bris in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkConjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data / Bingquan Li in International journal of applied Earth observation and geoinformation, vol 90 (August 2020)
PermalinkCorrection of systematic radiometric inhomogeneity in scanned aerial campaigns using principal component analysis / Lâmân Lelégard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkDevelopment and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping / Alvin B. Baloloy in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkEstimates of spaceborne precipitation radar pulsewidth and beamwidth using sea surface echo data / Kaya Kanemaru in IEEE Transactions on geoscience and remote sensing, vol 58 n° 8 (August 2020)
PermalinkExtraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method / Vijendra Singh Bramhe in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkGeometric distortion of historical images for 3D visualization / Evelyn Paiz-Reyes in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkGuided feature matching for multi-epoch historical image blocks pose estimation / Lulin Zhang in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkLanduse and land cover identification and disaggregating socio-economic data with convolutional neural network / Jingtao Yao in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkLeveraging photogrammetric mesh models for aerial-ground feature point matching toward integrated 3D reconstruction / Qing Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkOn-Orbit Calibration of Terra MODIS VIS Bands Using Polarization-Corrected Desert Observations / Amit Angal in IEEE Transactions on geoscience and remote sensing, vol 58 n° 8 (August 2020)
PermalinkPredicting biomass dynamics at the national extent from digital aerial photogrammetry / Bronwyn Price in International journal of applied Earth observation and geoinformation, vol 90 (August 2020)
PermalinkRecent changes in two outlet glaciers in the Antarctic Peninsula using multi-temporal Landsat and Sentinel-1 data / Carolina L. Simões in Geocarto international, vol 35 n° 11 ([01/08/2020])
PermalinkTowards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkA worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations / Laure Chandelier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
PermalinkClassification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkComplete and accurate data correction for seamless mosaicking of airborne hyperspectral images: A case study at a mining site in Inner Mongolia, China / Kun Tan in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
PermalinkCross-calibration of MODIS reflective solar bands with Sentinel 2A/2B MSI instruments / Amit Angal in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkEvaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches / S.M. Hamylton in International journal of applied Earth observation and geoinformation, vol 89 (July 2020)
PermalinkImproved crop classification with rotation knowledge using Sentinel-1 and -2 time series / Sébastien Giordano in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)
PermalinkMapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery / Kasper Johansen in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
PermalinkA novel framework based on polarimetric change vectors for unsupervised multiclass change detection in dual-pol intensity SAR images / David Pirrone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkSemi-automatic identification of submarine pipelines with synthetic aperture sonar Images / Victor Hugo Fernandes in Marine geodesy, Vol 43 n° 4 (July 2020)
PermalinkA simple distributed water balance model for an urbanized river basin using remote sensing and GIS techniques / Olutoyin Adeola Fashae in Geocarto international, vol 35 n° 9 ([01/07/2020])
PermalinkSubpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification / Yu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkUsing spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation / Kirsten J. Lees in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
Permalink