Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > stochastique > estimation statistique > estimation par noyau
estimation par noyau |
Documents disponibles dans cette catégorie (31)



Etendre la recherche sur niveau(x) vers le bas
A constraint-based approach for identifying the urban–rural fringe of polycentric cities using multi-sourced data / Jing Yang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
![]()
[article]
Titre : A constraint-based approach for identifying the urban–rural fringe of polycentric cities using multi-sourced data Type de document : Article/Communication Auteurs : Jing Yang, Auteur ; Jingwen Dong, Auteur ; Yizhong Sun, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 114 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] délimitation de frontière
[Termes IGN] données multisources
[Termes IGN] entropie de Shannon
[Termes IGN] espace rural
[Termes IGN] estimation par noyau
[Termes IGN] Kiangsou (Chine)
[Termes IGN] programmation par contraintes
[Termes IGN] transformation en ondelettes
[Termes IGN] urbanisation
[Termes IGN] zonage (urbanisme)
[Termes IGN] zone rurale
[Termes IGN] zone urbaineRésumé : (auteur) Studies on urban–rural fringes, which represent regions facing various urbanization problems caused by rapid expansion, have steadily increased in recent years. However, problems persist in the quantitative delimitation of such regions. Based on the characteristics of abrupt urbanization-level changes in urban–rural fringe areas, we propose a constraint-based method in this study to detect the urban–rural fringes of cities with a spatial polycentric structure of ‘Main center–Subcenter’ based on data from multiple sources. We used the proposed approach to delimitate the fringe areas of Jiangyin and Zhangjiagang and identify their urban main center and subcenter pre-defined by their city master plans, towns, and rural hinterlands. Comparison of the identified results of different single urbanization indices, a single detection center, kernel density estimation, and a single constraint revealed that the patch density and Shannon’s diversity index of the proposed method were higher in urban–rural fringes and smaller in city centers and rural hinterlands. This suggests that the landscape of urban–rural fringes delimitated by the proposed method is more fragmented, diverse, and complicated, thereby performing better. This study is significant for future urban spatial analysis, planning, and management. Numéro de notice : A2022-045 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/13658816.2021.1876236 Date de publication en ligne : 05/02/2021 En ligne : https://doi.org/10.1080/13658816.2021.1876236 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99404
in International journal of geographical information science IJGIS > vol 36 n° 1 (January 2022) . - pp 114 - 136[article]Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation / Guiming Zhang in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
![]()
[article]
Titre : Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation Type de document : Article/Communication Auteurs : Guiming Zhang, Auteur Année de publication : 2022 Article en page(s) : n° 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] estimation par noyau
[Termes IGN] exploration de données géographiques
[Termes IGN] géovisualisation
[Termes IGN] processeur graphique
[Termes IGN] qualité des données
[Termes IGN] réseau social
[Termes IGN] tâche claireRésumé : (auteur) Volunteer-contributed geographic data (VGI) is an important source of geospatial big data that support research and applications. A major concern on VGI data quality is that the underlying observation processes are inherently biased. Detecting observation hot-spots thus helps better understand the bias. Enabled by the parallel kernel density estimation (KDE) computational tool that can run on multiple GPUs (graphics processing units), this study conducted point pattern analyses on tens of millions of iNaturalist observations to detect and visualize volunteers’ observation hot-spots across spatial scales. It was achieved by setting varying KDE bandwidths in accordance with the spatial scales at which hot-spots are to be detected. The succession of estimated density surfaces were then rendered at a sequence of map scales for visual detection of hot-spots. This study offers an effective geovisualization scheme for hierarchically detecting hot-spots in massive VGI datasets, which is useful for understanding the pattern-shaping drivers that operate at multiple spatial scales. This research exemplifies a computational tool that is supported by high-performance computing and capable of efficiently detecting and visualizing multi-scale hot-spots in geospatial big data and contributes to expanding the toolbox for geospatial big data analytics. Numéro de notice : A2022-091 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11010055 Date de publication en ligne : 12/01/2022 En ligne : https://doi.org/10.3390/ijgi11010055 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99507
in ISPRS International journal of geo-information > vol 11 n° 1 (January 2022) . - n° 55[article]Modeling in forestry using mixture models fitted to grouped and ungrouped data / Eric K. Zenner in Forests, vol 12 n° 9 (September 2021)
![]()
[article]
Titre : Modeling in forestry using mixture models fitted to grouped and ungrouped data Type de document : Article/Communication Auteurs : Eric K. Zenner, Auteur ; Mahdi Teimouri, Auteur Année de publication : 2021 Article en page(s) : n° 1196 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] complexité
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] distribution de Weibull
[Termes IGN] distribution, loi de
[Termes IGN] dynamique de la végétation
[Termes IGN] estimation par noyau
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modélisation de la forêt
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) The creation and maintenance of complex forest structures has become an important forestry objective. Complex forest structures, often expressed in multimodal shapes of tree size/diameter (DBH) distributions, are challenging to model. Mixture probability density functions of two- or three-component gamma, log-normal, and Weibull mixture models offer a solution and can additionally provide insights into forest dynamics. Model parameters can be efficiently estimated with the maximum likelihood (ML) approach using iterative methods such as the Newton-Raphson (NR) algorithm. However, the NR algorithm is sensitive to the choice of initial values and does not always converge. As an alternative, we explored the use of the iterative expectation-maximization (EM) algorithm for estimating parameters of the aforementioned mixture models because it always converges to ML estimators. Since forestry data frequently occur both in grouped (classified) and ungrouped (raw) forms, the EM algorithm was applied to explore the goodness-of-fit of the gamma, log-normal, and Weibull mixture distributions in three sample plots that exhibited irregular, multimodal, highly skewed, and heavy-tailed DBH distributions where some size classes were empty. The EM-based goodness-of-fit was further compared against a nonparametric kernel-based density estimation (NK) model and the recently popularized gamma-shaped mixture (GSM) models using the ungrouped data. In this example application, the EM algorithm provided well-fitting two- or three-component mixture models for all three model families. The number of components of the best-fitting models differed among the three sample plots (but not among model families) and the mixture models of the log-normal and gamma families provided a better fit than the Weibull distribution for grouped and ungrouped data. For ungrouped data, both log-normal and gamma mixture distributions outperformed the GSM model and, with the exception of the multimodal diameter distribution, also the NK model. The EM algorithm appears to be a promising tool for modeling complex forest structures. Numéro de notice : A2021-721 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f12091196 En ligne : https://doi.org/10.3390/f12091196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98639
in Forests > vol 12 n° 9 (September 2021) . - n° 1196[article]Understanding collective human movement dynamics during large-scale events using big geosocial data analytics / Junchuan Fan in Computers, Environment and Urban Systems, vol 87 (May 2021)
![]()
[article]
Titre : Understanding collective human movement dynamics during large-scale events using big geosocial data analytics Type de document : Article/Communication Auteurs : Junchuan Fan, Auteur ; Kathleen Stewart, Auteur Année de publication : 2021 Article en page(s) : n° 101605 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] collecte de données
[Termes IGN] données GPS
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] dynamique spatiale
[Termes IGN] échantillonnage de données
[Termes IGN] éclipse solaire
[Termes IGN] estimation par noyau
[Termes IGN] Etats-Unis
[Termes IGN] événement
[Termes IGN] géolocalisation
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] téléphonie mobileRésumé : (auteur) Conventional approaches for modeling human mobility pattern often focus on human activity and movement dynamics in their regular daily lives and cannot capture changes in human movement dynamics in response to large-scale events. With the rapid advancement of information and communication technologies, many researchers have adopted alternative data sources (e.g., cell phone records, GPS trajectory data) from private data vendors to study human movement dynamics in response to large-scale natural or societal events. Big geosocial data such as georeferenced tweets are publicly available and dynamically evolving as real-world events are happening, making it more likely to capture the real-time sentiments and responses of populations. However, precisely-geolocated geosocial data is scarce and biased toward urban population centers. In this research, we developed a big geosocial data analytical framework for extracting human movement dynamics in response to large-scale events from publicly available georeferenced tweets. The framework includes a two-stage data collection module that collects data in a more targeted fashion in order to mitigate the data scarcity issue of georeferenced tweets; in addition, a variable bandwidth kernel density estimation(VB-KDE) approach was adopted to fuse georeference information at different spatial scales, further augmenting the signals of human movement dynamics contained in georeferenced tweets. To correct for the sampling bias of georeferenced tweets, we adjusted the number of tweets for different spatial units (e.g., county, state) by population. To demonstrate the performance of the proposed analytic framework, we chose an astronomical event that occurred nationwide across the United States, i.e., the 2017 Great American Eclipse, as an example event and studied the human movement dynamics in response to this event. However, this analytic framework can easily be applied to other types of large-scale events such as hurricanes or earthquakes. Numéro de notice : A2021-275 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101605 Date de publication en ligne : 05/02/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101605 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97358
in Computers, Environment and Urban Systems > vol 87 (May 2021) . - n° 101605[article]Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships / Sensen Wu in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
![]()
[article]
Titre : Geographically and temporally neural network weighted regression for modeling spatiotemporal non-stationary relationships Type de document : Article/Communication Auteurs : Sensen Wu, Auteur ; Zhongyi Wang, Auteur ; Zhenhong Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 582 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal
[Termes IGN] espace-temps
[Termes IGN] estimation par noyau
[Termes IGN] littoral
[Termes IGN] modélisation environnementale
[Termes IGN] raisonnement spatiotemporel
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression linéaireRésumé : (auteur) Geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR) are classic methods for estimating non-stationary relationships. Although these methods have been widely used in geographical modeling and spatiotemporal analysis, they face challenges in adequately expressing space-time proximity and constructing a kernel with optimal weights. This probably results in an insufficient estimation of spatiotemporal non-stationarity. To address complex non-linear interactions between time and space, a spatiotemporal proximity neural network (STPNN) is proposed in this paper to accurately generate space-time distance. A geographically and temporally neural network weighted regression (GTNNWR) model that extends geographically neural network weighted regression (GNNWR) with the proposed STPNN is then developed to effectively model spatiotemporal non-stationary relationships. To examine its performance, we conducted two case studies of simulated datasets and environmental modeling in coastal areas of Zhejiang, China. The GTNNWR model was fully evaluated by comparing with ordinary linear regression (OLR), GWR, GNNWR, and GTWR models. The results demonstrated that GTNNWR not only achieved the best fitting and prediction performance but also exactly quantified spatiotemporal non-stationary relationships. Further, GTNNWR has the potential to handle complex spatiotemporal non-stationarity in various geographical processes and environmental phenomena. Numéro de notice : A2021-167 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1775836 Date de publication en ligne : 16/06/2020 En ligne : https://doi.org/10.1080/13658816.2020.1775836 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97102
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 582 - 608[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021031 SL Revue Centre de documentation Revues en salle Disponible A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December-1 2020)
PermalinkUnfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkDetermining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam / Khanh Giang Le in Geo-spatial Information Science, vol 23 n° 2 (June 2020)
PermalinkPedestrian network generation based on crowdsourced tracking data / Xue Yang in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
PermalinkUsing GIS for disease mapping and clustering in Jeddah, Saudi Arabia / Abdulkader Murad in ISPRS International journal of geo-information, vol 9 n° 5 (May 2020)
PermalinkInteractive display of surnames distributions in historic and contemporary Great Britain / Justin Van Dijk in Journal of maps, vol 16 n° 1 ([02/01/2020])
PermalinkEPLA : efficient personal location anonymity / Dapeng Zhao in Geoinformatica [en ligne], vol 22 n° 1 (January 2018)
PermalinkPermalinkLocalisation des caméras ANPR sur le réseau routier pour le profilage géographique / Marie Trotta in Revue internationale de géomatique, vol 27 n° 4 (octobre - décembre 2017)
PermalinkA GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data / Guiming Zhang in International journal of geographical information science IJGIS, vol 31 n° 9-10 (September - October 2017)
Permalink