Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > méthode fondée sur le noyau
méthode fondée sur le noyau |
Documents disponibles dans cette catégorie (85)



Etendre la recherche sur niveau(x) vers le bas
A unified attention paradigm for hyperspectral image classification / Qian Liu in IEEE Transactions on geoscience and remote sensing, vol 61 n° 3 (March 2023)
![]()
[article]
Titre : A unified attention paradigm for hyperspectral image classification Type de document : Article/Communication Auteurs : Qian Liu, Auteur ; Zebin Wu, Auteur ; Yang Xu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5506316 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] précision de la classification
[Termes IGN] séparateur à vaste margeRésumé : (auteur) Attention mechanisms improve the classification accuracies by enhancing the salient information for hyperspectral images (HSIs). However, existing HSI attention models are driven by advanced achievements of computer vision, which are not able to fully exploit the spectral–spatial structure prior of HSIs and effectively refine features from a global perspective. In this article, we propose a unified attention paradigm (UAP) that defines the attention mechanism as a general three-stage process including optimizing feature representations, strengthening information interaction, and emphasizing meaningful information. Meanwhile, we designed a novel efficient spectral–spatial attention module (ESSAM) under this paradigm, which adaptively adjusts feature responses along the spectral and spatial dimensions at an extremely low parameter cost. Specifically, we construct a parameter-free spectral attention block that employs multiscale structured encodings and similarity calculations to perform global cross-channel interactions, and a memory-enhanced spatial attention block that captures key semantics of images stored in a learnable memory unit and models global spatial relationship by constructing semantic-to-pixel dependencies. ESSAM takes full account of the spatial distribution and low-dimensional characteristics of HSIs, with better interpretability and lower complexity. We develop a dense convolutional network based on efficient spectral–spatial attention network (ESSAN) and experiment on three real hyperspectral datasets. The experimental results demonstrate that the proposed ESSAM brings higher accuracy improvement compared to advanced attention models. Numéro de notice : A2023-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3257321 Date de publication en ligne : 15/12/2023 En ligne : https://doi.org/10.1109/TGRS.2023.3257321 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102957
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 3 (March 2023) . - n° 5506316[article]Prediction of suspended sediment concentration using hybrid SVM-WOA approaches / Sandeep Samantaray in Geocarto international, vol 37 n° 19 ([15/09/2022])
![]()
[article]
Titre : Prediction of suspended sediment concentration using hybrid SVM-WOA approaches Type de document : Article/Communication Auteurs : Sandeep Samantaray, Auteur ; Abinash Sahoo, Auteur Année de publication : 2022 Article en page(s) : pp 5609 - 5635 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] alluvion
[Termes IGN] bassin hydrographique
[Termes IGN] fonction de base radiale
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] régression
[Termes IGN] sédiment
[Termes IGN] séparateur à vaste margeRésumé : (auteur) Suspended sediment concentration (SSC) is one of the primary reasons with respect to watersheds or river basins, which must be assessed in a correct manner so that it will help decision makers to make right decisions regarding hydraulic structure, flash-flood, flood-mitigation of the basin. The present research evaluated efficacy of a hybrid model integrating Support Vector Machine with Whale optimization algorithm (SVM-WOA) for predicting SSC at Sundargarh and Salebhata stations in Mahanadi River, India. Various quantitative statistical evaluation constrains are applied to evacuate the model performance. Also, model performance of SVM-WOA is compared with SVM-PSO (Particle Swarm Optimization) and conventional SVM and RBFN (Radial Basis Function Network) models. The results reveal that, SVM-WOA performed superiorly in comparison to SVM-PSO, SVM and RBFN models for five different input scenarios during both training and testing phases. Hence, it is recommended to apply SVM-WOA as an appropriate technique for hydrological simulation at the basin. Numéro de notice : A2022-707 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920638 Date de publication en ligne : 17/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101577
in Geocarto international > vol 37 n° 19 [15/09/2022] . - pp 5609 - 5635[article]Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)
![]()
[article]
Titre : Generating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes Type de document : Article/Communication Auteurs : Christian Kruse, Auteur ; Dennis Wittich, Auteur ; Franz Rottensteiner, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme du recuit simulé
[Termes IGN] chevauchement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] échantillonnage de données
[Termes IGN] Europe centrale
[Termes IGN] guerre
[Termes IGN] image aérienne
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] processus ponctuel marqué
[Termes IGN] processus stochastiqueRésumé : (auteur) Even more than 75 years after the Second World War, numerous unexploded bombs (duds) linger in the ground and pose a considerable hazard to society. The areas containing these duds are documented in so-called impact maps, which are based on locations of exploded bombs; these locations can be found in aerial images taken shortly after bombing. To generate impact maps, in this paper we present a novel approach based on marked point processes (MPPs) for the automatic detection of bomb craters in such images, some of which are overlapping. The object model for the craters is represented by circles and is embedded in the MPP-framework. By means of stochastic sampling, the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function that describes the consistency with a predefined object model. High gradient magnitudes along the object borders and homogeneous grey values inside the objects are favoured, while overlaps between objects are penalized. Reversible Jump Markov Chain Monte Carlo sampling, in combination with simulated annealing, provides the global optimum of the energy function. Our procedure allows the combination of individual detection results covering the same location. Afterwards, a probability map for duds is generated from the detections via kernel density estimation and areas around the detections are classified as contaminated, resulting in an impact map. Our results, based on 74 aerial wartime images taken over different areas in Central Europe, show the potential of the method; among other findings, a clear improvement is achieved by using redundant image information. We also compared the MPP method for bomb crater detection with a state-of-of-the-art convolutional neural network (CNN) for generating region proposals; it turned out that the CNN outperforms the MPPs if a sufficient amount of representative training data is available and a threshold for a region to be considered as crater is properly tuned prior to running the experiments. If this is not the case, the MPP approach achieves better results. Numéro de notice : A2022-515 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100017 Date de publication en ligne : 02/06/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101057
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 5 (August 2022)[article]Mixed geographically and temporally weighted regression for spatio-temporal deformation modelling / Zhijia Yang in Survey review, vol 54 n° 385 (July 2022)
![]()
[article]
Titre : Mixed geographically and temporally weighted regression for spatio-temporal deformation modelling Type de document : Article/Communication Auteurs : Zhijia Yang, Auteur ; Wujiao Dai, Auteur ; Wenkun Yu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 290 - 300 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Topographie
[Termes IGN] auscultation d'ouvrage
[Termes IGN] barrage
[Termes IGN] déformation d'édifice
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] régression géographiquement pondérée
[Termes IGN] surveillance d'ouvrageRésumé : (auteur) When the regression coefficient of independent variable has both global stationarity and spatio-temporal non-stationarity properties, the deformation model based on the geographically and temporally weighted regression (GTWR) will no longer be applicable. In order to resolve this problem, we propose an improved method to establish the spatio-temporal deformation model using mixed geographically and temporally weighted regression (MGTWR). In this method, both the global regression coefficient and the variable regression coefficient are selected for regression coefficient hypothesis test, and the local linear two-step estimation method is used to fit the MGTWR model. A dam deformation modelling example shows that the MGTWR model improves the average prediction accuracy by 57.6% compared to the GTWR model when the regression coefficients have both global stationarity and spatio-temporal non-stationarity properties. Numéro de notice : A2022-534 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1935578 Date de publication en ligne : 10/06/2021 En ligne : https://doi.org/10.1080/00396265.2021.1935578 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101090
in Survey review > vol 54 n° 385 (July 2022) . - pp 290 - 300[article]Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : Street-view imagery guided street furniture inventory from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yuzhou Zhou, Auteur ; Xu Han, Auteur ; Mingjun Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Streetview
[Termes IGN] instance
[Termes IGN] inventaire
[Termes IGN] jeu de données localisées
[Termes IGN] masque
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] séparateur à vaste marge
[Termes IGN] Shanghai (Chine)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Outdated or sketchy inventory of street furniture may misguide the planners on the renovation and upgrade of transportation infrastructures, thus posing potential threats to traffic safety. Previous studies have taken their steps using point clouds or street-view imagery (SVI) for street furniture inventory, but there remains a gap to balance semantic richness, localization accuracy and working efficiency. Therefore, this paper proposes an effective pipeline that combines SVI and point clouds for the inventory of street furniture. The proposed pipeline encompasses three steps: (1) Off-the-shelf street furniture detection models are applied on SVI for generating two-dimensional (2D) proposals and then three-dimensional (3D) point cloud frustums are accordingly cropped; (2) The instance mask and the instance 3D bounding box are predicted for each frustum using a multi-task neural network; (3) Frustums from adjacent perspectives are associated and fused via multi-object tracking, after which the object-centric instance segmentation outputs the final street furniture with 3D locations and semantic labels. This pipeline was validated on datasets collected in Shanghai and Wuhan, producing component-level street furniture inventory of nine classes. The instance-level mean recall and precision reach 86.4%, 80.9% and 83.2%, 87.8% respectively in Shanghai and Wuhan, and the point-level mean recall, precision, weighted coverage all exceed 73.7%. Numéro de notice : A2022-403 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.04.023 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100711
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 63 - 77[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Assessing and mapping landslide susceptibility using different machine learning methods / Osman Orhan in Geocarto international, vol 37 n° 10 ([01/06/2022])
PermalinkExtraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
PermalinkAboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models / Dibyendu Deb in Geocarto international, vol 37 n° 4 ([15/02/2022])
PermalinkA robust nonrigid point set registration framework based on global and intrinsic topological constraints / Guiqiang Yang in The Visual Computer, vol 38 n° 2 (February 2022)
PermalinkSiamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)
PermalinkFlood susceptibility mapping using meta-heuristic algorithms / Alireza Arabameri in Geomatics, Natural Hazards and Risk, vol 13 (2022)
PermalinkA comparative approach of support vector machine kernel functions for GIS-based landslide susceptibility mapping / Khalil Valizadeh Kamran in Applied geomatics, vol 13 n° 4 (December 2021)
PermalinkSpatially–encouraged spectral clustering: a technique for blending map typologies and regionalization / Levi John Wolf in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkMultiscale context-aware ensemble deep KELM for efficient hyperspectral image classification / Bobo Xi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
PermalinkRetrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean / Kunpeng Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
Permalink