Descripteur
Termes descripteurs IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géophysique interne > géodésie > géodésie physique > orientation de la Terre > paramètres d'orientation de la Terre
paramètres d'orientation de la Terre |



Etendre la recherche sur niveau(x) vers le bas
Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study / Grzegorz Klopotek in Journal of geodesy, vol 94 n° 6 (June 2020)
![]()
[article]
Titre : Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study Type de document : Article/Communication Auteurs : Grzegorz Klopotek, Auteur ; Thomas Hobiger, Auteur ; Rüdiger Haas, Auteur ; Toshimichi Otsubo, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] constellation GNSS
[Termes descripteurs IGN] données Galileo
[Termes descripteurs IGN] données Lageos
[Termes descripteurs IGN] données VGOS
[Termes descripteurs IGN] géocentre
[Termes descripteurs IGN] interférométrie à très grande base
[Termes descripteurs IGN] méthode de Monte-Carlo
[Termes descripteurs IGN] orbitographie
[Termes descripteurs IGN] paramètres d'orientation de la Terre
[Termes descripteurs IGN] quasar
[Termes descripteurs IGN] rotation de la TerreRésumé : (auteur) Recent efforts of tracking low Earth orbit and medium Earth orbit (MEO) satellites using geodetic very long baseline interferometry (VLBI) raise questions on the potential of this novel observation concept for space geodesy. Therefore, we carry out extensive Monte Carlo simulations in order to investigate the feasibility of geodetic VLBI for precise orbit determination (POD) of MEO satellites and assess the impact of quality and quantity of satellite observations on the derived geodetic parameters. The MEO satellites are represented in our study by LAGEOS-1/-2 and a set of Galileo satellites. The concept is studied on the basis of 3-day solutions in which satellite observations are included into real schedules of the continuous geodetic VLBI campaign 2017 (CONT17) as well as simulated schedules concerning the next-generation VLBI system, known as the VLBI Global Observing System (VGOS). Our results indicate that geodetic VLBI can perform on a comparable level as other space-geodetic techniques concerning POD of MEO satellites. For an assumed satellite observation precision better than 14.1 mm (47 ps), an average 3D orbit precision of 2.0 cm and 6.3 cm is found for schedules including LAGEOS-1/-2 and Galileo satellites, respectively. Moreover, geocenter offsets, which were so far out of scope for the geodetic VLBI analysis, are close to the detection limit for the simulations concerning VGOS observations of Galileo satellites, with the potential to further enhance the results. Concerning the estimated satellite orbits, VGOS leads to an average precision improvement of 80% with respect to legacy VLBI. In absolute terms and for satellite observation precision of 14.1 mm (47 ps), this corresponds to an average value of 17 mm and 7 mm concerning the 3D orbit scatter and precision of geocenter components, respectively. As shown in this study, a poor satellite geometry can degrade the derived Earth rotation parameters and VLBI station positions, compared to the quasar-only reference schedules. Therefore, careful scheduling of both quasar and satellite observations should be performed in order to fully benefit from this novel observation concept. Numéro de notice : A2020-342 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01381-9 date de publication en ligne : 11/06/2020 En ligne : https://doi.org/10.1007/s00190-020-01381-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95221
in Journal of geodesy > vol 94 n° 6 (June 2020)[article]Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science / Jurgen Müller in Journal of geodesy, vol 93 n°11 (November 2019)
![]()
[article]
Titre : Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science Type de document : Article/Communication Auteurs : Jurgen Müller, Auteur ; Thomas W. Murphy Jr, Auteur ; Ulrich Schreiber, Auteur ; et al., Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] géophysique
[Termes descripteurs IGN] Lune
[Termes descripteurs IGN] paramètres d'orientation de la Terre
[Termes descripteurs IGN] principe d'équivalence
[Termes descripteurs IGN] relativité générale
[Termes descripteurs IGN] repère de référence
[Termes descripteurs IGN] rétroréflecteur
[Termes descripteurs IGN] sciences de la Terre et de l'univers
[Termes descripteurs IGN] signal laser
[Termes descripteurs IGN] télémétrie laser sur la LuneRésumé : (auteur) Only a few sites on Earth are technically equipped to carry out Lunar Laser Ranging (LLR) to retroreflector arrays on the surface of the Moon. Despite the weak signal, they have successfully provided LLR range data for about 49 years, generating about 26,000 normal points. Recent system upgrades and new observatories have made millimeter-level range accuracy achievable. Based on appropriate modeling and sophisticated data analysis, LLR is able to determine many parameters associated with Earth–Moon dynamics, involving the lunar ephemeris, lunar physics, the Moon’s interior, reference frames and Earth orientation parameters. LLR has also become one of the strongest tools for testing Einstein’s theory of general relativity in the solar system. By extending the standard solution, it is possible to solve for parameters related to gravitational physics, like the temporal variation of the gravitational constant, metric parameters as well as the strong equivalence principle, preferred-frame effects and standard-model extensions. This paper provides a review about LLR measurement and analysis. After a short historical overview, we describe the key findings of LLR, the apparatus and technologies involved, the requisite modeling techniques, some recent results and future prospects on all fronts. We expect continued improvements in LLR, maintaining its lead in contributing to science. Numéro de notice : A2019-611 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01296-0 date de publication en ligne : 17/09/2019 En ligne : https://doi.org/10.1007/s00190-019-01296-0 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94799
in Journal of geodesy > vol 93 n°11 (November 2019)[article]Consistent realization of celestial and terrestrial reference frames / Younghee Kwak in Journal of geodesy, vol 92 n° 9 (September 2018)
![]()
[article]
Titre : Consistent realization of celestial and terrestrial reference frames Type de document : Article/Communication Auteurs : Younghee Kwak, Auteur ; Mathis Blossfeld, Auteur ; Ralf Schmid, Auteur ; Detlef Angermann, Auteur ; Michael Gerstl, Auteur ; Manuela Seitz, Auteur Année de publication : 2018 Article en page(s) : pp 1047 - 1061 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes descripteurs IGN] cohérence des données
[Termes descripteurs IGN] erreur systématique inter-systèmes
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] paramètres d'orientation de la Terre
[Termes descripteurs IGN] point de liaison (géodésie)
[Termes descripteurs IGN] système de référence célesteRésumé : (Auteur) The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005–2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of ΔUT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques. Numéro de notice : A2018-458 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1130-6 date de publication en ligne : 12/03/2018 En ligne : https://doi.org/10.1007/s00190-018-1130-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91055
in Journal of geodesy > vol 92 n° 9 (September 2018) . - pp 1047 - 1061[article]Future global SLR network evolution and its impact on the terrestrial reference frame / Alexander Kehm in Journal of geodesy, vol 92 n° 6 (June 2018)
![]()
[article]
Titre : Future global SLR network evolution and its impact on the terrestrial reference frame Type de document : Article/Communication Auteurs : Alexander Kehm, Auteur ; Mathis Blossfeld, Auteur ; Erricos C. Pavlis, Auteur ; Florian Seitz, Auteur Année de publication : 2018 Article en page(s) : pp 625 – 635 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes descripteurs IGN] données TLS (télémétrie)
[Termes descripteurs IGN] International Terrestrial Reference Frame
[Termes descripteurs IGN] paramètres d'orientation de la Terre
[Termes descripteurs IGN] télémétrie laser sur satelliteRésumé : (Auteur) Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects. Numéro de notice : A2018-152 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-017-1083-1 date de publication en ligne : 09/11/2017 En ligne : https://doi.org/10.1007/s00190-017-1083-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89765
in Journal of geodesy > vol 92 n° 6 (June 2018) . - pp 625 – 635[article]IGS polar motion measurement accuracy / Jim Ray in Geodesy and Geodynamics, vol 8 n° 6 (November 2017)
![]()
![]()
[article]
Titre : IGS polar motion measurement accuracy Type de document : Article/Communication Auteurs : Jim Ray, Auteur ; Paul Rebischung , Auteur ; Jake Griffiths, Auteur
Année de publication : 2017 Article en page(s) : pp 413 - 420 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes descripteurs IGN] données GPS
[Termes descripteurs IGN] erreur systématique
[Termes descripteurs IGN] International GNSS Service
[Termes descripteurs IGN] mouvement du pôle
[Termes descripteurs IGN] orientation de la Terre
[Termes descripteurs IGN] paramètres d'orientation de la Terre
[Termes descripteurs IGN] précision du positionnementRésumé : (auteur) We elaborate an error budget for the long-term accuracy of IGS (International Global Navigation Satellite System Service) polar motion estimates, concluding that it is probably about 25–30 μas (1-sigma) overall, although it is not possible to quantify possible contributions (mainly annual) that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller, around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS (Global Positioning System) draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods. Numéro de notice : A2017-253 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.geog.2017.01.008 date de publication en ligne : 02/03/2017 En ligne : https://doi.org/10.1016/j.geog.2017.01.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85261
in Geodesy and Geodynamics > vol 8 n° 6 (November 2017) . - pp 413 - 420[article]Documents numériques
en open access
IGS polar motion measurement accuracy - pdf éditeurAdobe Acrobat PDFA global terrestrial reference frame from simulated VLBI and SLR data in view of GGOS / Susanne Glaser in Journal of geodesy, vol 91 n° 7 (July 2017)
PermalinkThe extension of the parametrization of the radio source coordinates in geodetic VLBI and its impact on the time series analysis / Maria Karbon in Journal of geodesy, vol 91 n° 7 (July 2017)
PermalinkTesting impact of the strategy of VLBI data analysis on the estimation of Earth Orientation Parameters and station coordinates / Agata Wielgosz in Reports on geodesy and geoinformatics, vol 101 (June 2016)
PermalinkPermalink