Descripteur
Termes IGN > mathématiques > statistique mathématique > probabilités > stochastique > modèle stochastique > modèle graphique > champ aléatoire de Markov > champ aléatoire conditionnel
champ aléatoire conditionnel |
Documents disponibles dans cette catégorie (16)



Etendre la recherche sur niveau(x) vers le bas
Titre : Geospatial analysis of the spreading of COVID-19 In the United States Type de document : Mémoire Auteurs : Otto Heimonen, Auteur Editeur : Tampere [Finlande] : Tampere University Année de publication : 2021 Importance : 67 p. Format : 21 x 30 cm Note générale : bibliographie
Master’s Degree Programme in Computational Big Data AnalyticsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] autocorrélation spatiale
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] Etats-Unis
[Termes IGN] maladie infectieuse
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle de simulationRésumé : (auteur) The COVID-19 pandemic has been a big threat to public health and there is an increasing need for efficient modelling of pathogens, predicting the daily infection rates to reduce the spread of COVID-19.
The Moran’s and Geary’s statistics showed significant spatial autocorrelation in the infection counts for the
US COVID-19 data. Spatial regression using the simultaneous autoregression (SAR) and conditional autoregression (CAR) models indicate clear association between the confirmed cases and the number of population and the population density in both national county and state specific analyses. The SAR model provided a better model fit with the low AIC value, leaving no significant autocorrelation for the residuals. The approximate Bayesian computation (ABC) methods were used to provide a flexible posterior distribution of the infection rate for COVID-19 based on the first 100 days of the pandemic. Three different simulation methods such as ABC-Rejection, ABC-Markov Chain Monte Carlo (MCMC) and ABC-Sequential Monte Carlo (SMC) were employed and compared. These algorithms seem to give reasonable posterior estimates for the average daily infections when the likelihood calculations for the spread of a harmful pathogen become complex, or intractable entirely. The posterior distributions of ABC-MCMC and ABC-SMC provided plausible estimations covering all of the observed infection rates at different time points.Note de contenu : 1- Introduction
2- Methods
3- Empirical data analysis
4- DiscussionNuméro de notice : 28455 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Mémoire masters divers DOI : sans En ligne : https://trepo.tuni.fi/handle/10024/134567 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99025 Addressing overfitting on point cloud classification using Atrous XCRF / Hasan Asy’ari Arief in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
![]()
[article]
Titre : Addressing overfitting on point cloud classification using Atrous XCRF Type de document : Article/Communication Auteurs : Hasan Asy’ari Arief, Auteur ; Ulf Geir Indahl, Auteur ; Geir-Harald Strand, Auteur ; Håvard Tveite, Auteur Année de publication : 2019 Article en page(s) : pp 90 - 101 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification automatique
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal profond
[Termes IGN] semis de pointsRésumé : (Auteur) Advances in techniques for automated classification of point cloud data introduce great opportunities for many new and existing applications. However, with a limited number of labelled points, automated classification by a machine learning model is prone to overfitting and poor generalization. The present paper addresses this problem by inducing controlled noise (on a trained model) generated by invoking conditional random field similarity penalties using nearby features. The method is called Atrous XCRF and works by forcing a trained model to respect the similarity penalties provided by unlabeled data. In a benchmark study carried out using the ISPRS 3D labeling dataset, our technique achieves 85.0% in term of overall accuracy, and 71.1% in term of F1 score. The result is on par with the current best model for the benchmark dataset and has the highest value in term of F1 score. Additionally, transfer learning using the Bergen 2018 dataset, without model retraining, was also performed. Even though our proposal provides a consistent 3% improvement in term of accuracy, more work still needs to be done to alleviate the generalization problem on the domain adaptation and the transfer learning field. Numéro de notice : A2019-312 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.07.002 Date de publication en ligne : 11/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.07.002 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93337
in ISPRS Journal of photogrammetry and remote sensing > vol 155 (September 2019) . - pp 90 - 101[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019091 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019093 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density / Yuan Li in ISPRS Journal of photogrammetry and remote sensing, vol 153 (July 2019)
![]()
[article]
Titre : Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Bo Wu, Auteur ; Xuming Ge, Auteur Année de publication : 2019 Article en page(s) : pp 151 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification
[Termes IGN] classification basée sur les régions
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Hong-Kong
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] Paris (75)
[Termes IGN] scène urbaine
[Termes IGN] segmentation en régions
[Termes IGN] segmentation hiérarchique
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Objects are formed by various structures and such structural information is essential for the identification of objects, especially for street facilities presented by mobile laser scanning (MLS) data with abundant details. However, due to the large volume of data, large variations in point density, noise and complexity of scanned scenes, the achievement of effective decomposition of objects into physical meaningful structures remains a challenge issue. And structural information has been rarely considered to improve the accuracy of distinguishing between objects with global or local similarity, such as traffic signs and traffic lights. Therefore, we propose a structural segmentation and classification method for MLS point clouds that is efficient and robust to variations in point density and complex urban scenes. During the segmentation stage, a novel region growing approach and a multi-size supervoxel segmentation algorithm robust to noise and varying density are combined to extract effective local shape descriptors. Structural components with physically meaningful labels are generated via structural labelling and clustering. During the classification stage, we consider the structural information at various scales and locations and encode it into a conditional random-field model for unary and pairwise inferences. High-order potentials are also introduced into the conditional random field to eliminate regional label noise. These high-order potentials are defined upon regions independent of connection relationships and can therefore take effect on isolated nodes. Experiments with two MLS datasets of typical urban scenes in Paris and Hong Kong were used to evaluate the performance of the proposed method. Nine and eleven different object classes were recognized from these two datasets with overall accuracies of 97.13% and 95.79%, respectively, indicating the effectiveness of the proposed method of interpreting complex urban scenes from point clouds with large variations in point density. Compared with previous studies on the Paris dataset, our method was able to recognize more classes and obtained a mean F1-score of 72.70% of seven common classes, being higher than the best of previous results. Numéro de notice : A2019-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.007 Date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93075
in ISPRS Journal of photogrammetry and remote sensing > vol 153 (July 2019) . - pp 151 - 165[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019073 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2019072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Semantic façade segmentation from airborne oblique images / Yaping Lin in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
![]()
[article]
Titre : Semantic façade segmentation from airborne oblique images Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; Francesco Nex, Auteur ; Michael Ying Yang, Auteur Année de publication : 2019 Article en page(s) : pp 425 - 433 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] façade
[Termes IGN] image aérienne oblique
[Termes IGN] image RVB
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) In this paper, oblique airborne images with very high resolution are used to address the problem from aerial views in urban areas. Traditional classification method (i.e., random forests) is compared with state-of-the-art fully convolutional networks (FCNs). Random forests use hand-craft image features including red, green, blue (RGB), scale-invariant feature transform (SIFT), and Texton, and point cloud features consisting of normal vector and planarity extracted from different scales. In contrast, the inputs of FCNs are the RGB bands and the third components of normal vectors. In both cases, three-dimensional (3D) features are projected back into the image space to support the facade interpretation. Fully connected conditional random field (CRF) is finally taken as a post-processing of the FCN to refine the segmentation results. Several tests have been performed and the achieved results show that the models embedding the 3D component outperform the solution using only images. FCNs significantly outperformed random forests, especially for the balcony delineation. Numéro de notice : A2019-247 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.425 Date de publication en ligne : 01/06/2019 En ligne : https://doi.org/10.14358/PERS.85.6.425 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93003
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 425 - 433[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible Conditional random field and deep feature learning for hyperspectral image classification / Fahim Irfan Alam in IEEE Transactions on geoscience and remote sensing, vol 57 n° 3 (March 2019)
![]()
[article]
Titre : Conditional random field and deep feature learning for hyperspectral image classification Type de document : Article/Communication Auteurs : Fahim Irfan Alam, Auteur ; Jun Zhou, Auteur ; Alan Wee-Chung Liew, Auteur ; Xiuping Jia, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1612 - 1628 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multibande
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déconvolution
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] voxelRésumé : (Auteur) Image classification is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, a convolutional neural network (CNN) has established itself as a powerful model in classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the classification performance. In this paper, we propose a method to classify hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral band groups to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of 3-D data cubes. Furthermore, we introduce a deep deconvolution network that improves the final classification performance. We also introduced a new data set and experimented our proposed method on it along with several widely adopted benchmark data sets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method. Numéro de notice : A2019-131 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2867679 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2867679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92461
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 3 (March 2019) . - pp 1612 - 1628[article]Automatic building rooftop extraction from aerial images via hierarchical RGB-D priors / Shibiao Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 12 (December 2018)
PermalinkDeep multi-task learning for a geographically-regularized semantic segmentation of aerial images / Michele Volpi in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
PermalinkContextual classification using photometry and elevation data for damage detection after an earthquake event / Ewelina Rupnik in European journal of remote sensing, vol 51 n° 1 (2018)
PermalinkCrop-rotation structured classification using multi-source sentinel images and LPIS for crop type mapping / Simon Bailly (2018)
PermalinkLearning aggregated features and optimizing model for semantic labeling / Jianhua Wang in The Visual Computer, vol 33 n° 12 (December 2017)
PermalinkA higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkAnalyse de séries temporelles d’images Sentinel et intégration de connaissances pour la classification en milieu agricole / Simon Bailly (2017)
PermalinkComparison of belief propagation and graph-cut approaches for contextual classification of 3D LIDAR point cloud data / Loïc Landrieu (2017)
![]()
PermalinkPré-segmentation pour la classification faiblement supervisée de scènes urbaines à partir de nuages de points 3D LIDAR / Stéphane Guinard (2017)
PermalinkWeakly supervised segmentation-aided classification of urban scenes from 3D LIDAR point clouds / Stéphane Guinard (2017)
Permalink