Descripteur
Documents disponibles dans cette catégorie (27)



Etendre la recherche sur niveau(x) vers le bas
Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images / Ziyao Xing in Sustainable Cities and Society, vol 92 (May 2023)
![]()
[article]
Titre : Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images Type de document : Article/Communication Auteurs : Ziyao Xing, Auteur ; Shuai Yang, Auteur ; Xuli Zan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104467 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] gestion des risques
[Termes IGN] image Streetview
[Termes IGN] inondation
[Termes IGN] milieu urbain
[Termes IGN] planification urbaine
[Termes IGN] Quickbird
[Termes IGN] segmentation sémantique
[Termes IGN] vulnérabilitéRésumé : (auteur) Urban flood risk management requires an extensive investigation of the vulnerability characteristics of buildings. Large-scale field surveys usually cost a lot of time and money, while satellite remote sensing and street view images can provide information on the tops and facades of buildings respectively. Thereupon, this paper develops a building vulnerability assessment framework using remote sensing and street view features. Specifically, a UNet-based semantic segmentation model, FSA-UNet (Fusion-Self-Attention-UNet) is proposed to integrate remote sensing and street view features and the vulnerability information contained in the images is fully exploited. And the building vulnerability index is generated to provide the spatial distribution characteristics of urban building vulnerability. The experiment shows that the mIoU of the proposed model can reach 82% for building vulnerability classification in Hefei, China, which is more accurate than the traditional semantic segmentation models. The results indicate that the integration of street view and remote sensing image features can improve the ability of building vulnerability assessment, and the model proposed in this study can better capture the correlation features of multi-angle images through the self-attention mechanism and combines hierarchy features and edge information to improve the classification effect. This study can support for disaster management and urban planning. Numéro de notice : A2023-152 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2023.104467 Date de publication en ligne : 23/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104467 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102826
in Sustainable Cities and Society > vol 92 (May 2023) . - n° 104467[article]Sensing urban soundscapes from street view imagery / Tianhong Zhao in Computers, Environment and Urban Systems, vol 99 (January 2023)
![]()
[article]
Titre : Sensing urban soundscapes from street view imagery Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Xiucheng Liang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] bruit (audition)
[Termes IGN] distribution spatiale
[Termes IGN] image Streetview
[Termes IGN] paysage sonore
[Termes IGN] planification urbaine
[Termes IGN] pollution acoustique
[Termes IGN] Shenzhen
[Termes IGN] Singapour
[Termes IGN] ville durable
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) A healthy acoustic environment is an essential component of sustainable cities. Various noise monitoring and simulation techniques have been developed to measure and evaluate urban sounds. However, sensing large areas at a fine resolution remains a great challenge. Based on machine learning, we introduce a new application of street view imagery — estimating large-area high-resolution urban soundscapes, investigating the premise that we can predict and characterize soundscapes without laborious and expensive noise measurements. First, visual features are extracted from street-level imagery using computer vision. Second, fifteen soundscape indicators are identified and a survey is conducted to gauge them solely from images. Finally, a prediction model is constructed to infer the urban soundscape by modeling the non-linear relationship between them. The results are verified with extensive field surveys. Experiments conducted in Singapore and Shenzhen using half a million images affirm that street view imagery enables us to sense large-scale urban soundscapes with low cost but high accuracy and detail, and provides an alternative means to generate soundscape maps. reaches 0.48 by evaluating the predicted results with field data collection. Further novelties in this domain are revealing the contributing visual elements and spatial laws of soundscapes, underscoring the usability of crowdsourced data, and exposing international patterns in perception. Numéro de notice : A2023-014 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101915 Date de publication en ligne : 20/11/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101915 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102131
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101915[article]Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning / Yunqin Li in Sustainable Cities and Society, vol 86 (November 2022)
![]()
[article]
Titre : Measuring visual walkability perception using panoramic street view images, virtual reality, and deep learning Type de document : Article/Communication Auteurs : Yunqin Li, Auteur ; Nobuyoshi Yabuki, Auteur ; Tomohiro Fukuda, Auteur Année de publication : 2022 Article en page(s) : n° 104140 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] corrélation
[Termes IGN] image panoramique
[Termes IGN] image Streetview
[Termes IGN] modèle de régression
[Termes IGN] piéton
[Termes IGN] réalité virtuelle
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] visionRésumé : (auteur) Measuring perceptions of visual walkability in urban streets and exploring the associations between the visual features of the street built environment that make walking attractive to humans are both theoretically and practically important. Previous studies have used either environmental audits and subjective evaluations that have limitations in terms of cost, time, and measurement scale, or computer-aided audits based on natural street view images (SVIs) but with gaps in real perception. In this study, a virtual reality panoramic image-based deep learning framework is proposed for measuring visual walkability perception (VWP) and then quantifying and visualizing the contributing visual features. A VWP classification deep multitask learning (VWPCL) model was first developed and trained on human ratings of panoramic SVIs in virtual reality to predict VWP in six categories. Second, a regression model was used to determine the degree of correlation of various objects with one of the six VWP categories based on semantic segmentation. Furthermore, an interpretable deep learning model was used to assist in identifying and visualizing elements that contribute to VWP. The experiment validated the accuracy of the VWPCL model for predicting VWP. The results represent a further step in understanding the interplay of VWP and street-level semantics and features. Numéro de notice : A2022-816 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2022.104140 Date de publication en ligne : 21/08/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104140 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101982
in Sustainable Cities and Society > vol 86 (November 2022) . - n° 104140[article]Mapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery / Shengyuan Zou in International journal of applied Earth observation and geoinformation, vol 113 (September 2022)
![]()
[article]
Titre : Mapping individual abandoned houses across cities by integrating VHR remote sensing and street view imagery Type de document : Article/Communication Auteurs : Shengyuan Zou, Auteur ; Le Wang, Auteur Année de publication : 2022 Article en page(s) : n° 103018 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection d'objet
[Termes IGN] image à très haute résolution
[Termes IGN] image Streetview
[Termes IGN] logement
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] zone urbaineRésumé : (auteur) Abandoned houses (AH) present an utmost challenge confronting the urban environment in contemporary U.S. shrinking cities. Data accessibility is a major hurdle that prevents the acquisition of large-scale AH information at the individual property level. To this end, the latest revolution of open-access remote sensing platforms has witnessed a plethora of multi-source, multi-perspective fine-spatial-resolution data for urban environments, among which very-high-resolution (VHR) top-down view remote sensing images and horizontal-perspective Google Street View (GSV) images are prominent exemplifiers. In this study, we aim to map individual-level abandoned houses across cities by developing a method that can effectively leverage VHR remote sensing and GSV images. The proposed method is composed of four steps. First, we explored the feasibility of the three most relevant and complementary remote sensing data for individual-level AH detection, i.e., daytime VHR images, nighttime light VHR images, and GSV images. Second, we extracted discriminative features that are indicative of housing abandonment conditions from the three disparate data sources. Third, we applied decision-level fusion with Dempster-Shafer Theory (DST) to better leverage the prior knowledge about data effectiveness. In the last step, a geographical random forests (GRF) model was first implemented to improve the predictions of where houses were occluded on GSV images. We mapped individual AH in two typical U.S. shrinking cities, Buffalo, NY, and Cleveland, OH, which allowed us to further explore the individual-property-level spatial characteristics of AH. Results revealed that the proposed DST fusion and GRF prediction consistently achieved promising performance across the two cities. Given the merits of incorporating open-access and multi-perspective data, our proposed method has the potential to be generalized to understanding regional and national-scale urban environments tackling housing abandonment challenges. Numéro de notice : A2022-788 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103018 Date de publication en ligne : 18/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101894
in International journal of applied Earth observation and geoinformation > vol 113 (September 2022) . - n° 103018[article]3D building reconstruction from single street view images using deep learning / Hui En Pang in International journal of applied Earth observation and geoinformation, vol 112 (August 2022)
![]()
[article]
Titre : 3D building reconstruction from single street view images using deep learning Type de document : Article/Communication Auteurs : Hui En Pang, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : n° 102859 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] empreinte
[Termes IGN] Helsinki
[Termes IGN] image Streetview
[Termes IGN] maillage
[Termes IGN] morphologie urbaine
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) 3D building models are an established instance of geospatial information in the built environment, but their acquisition remains complex and topical. Approaches to reconstruct 3D building models often require existing building information (e.g. their footprints) and data such as point clouds, which are scarce and laborious to acquire, limiting their expansion. In parallel, street view imagery (SVI) has been gaining currency, driven by the rapid expansion in coverage and advances in computer vision (CV), but it has not been used much for generating 3D city models. Traditional approaches that can use SVI for reconstruction require multiple images, while in practice, often only few street-level images provide an unobstructed view of a building. We develop the reconstruction of 3D building models from a single street view image using image-to-mesh reconstruction techniques modified from the CV domain. We regard three scenarios: (1) standalone single-view reconstruction; (2) reconstruction aided by a top view delineating the footprint; and (3) refinement of existing 3D models, i.e. we examine the use of SVI to enhance the level of detail of block (LoD1) models, which are common. The results suggest that trained models supporting (2) and (3) are able to reconstruct the overall geometry of a building, while the first scenario may derive the approximate mass of the building, useful to infer the urban form of cities. We evaluate the results by demonstrating their usefulness for volume estimation, with mean errors of less than 10% for the last two scenarios. As SVI is now available in most countries worldwide, including many regions that do not have existing footprint and/or 3D building data, our method can derive rapidly and cost-effectively the 3D urban form from SVI without requiring any existing building information. Obtaining 3D building models in regions that hitherto did not have any, may enable a number of 3D geospatial analyses locally for the first time. Numéro de notice : A2022-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102859 Date de publication en ligne : 17/06/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102859 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101160
in International journal of applied Earth observation and geoinformation > vol 112 (August 2022) . - n° 102859[article]An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
PermalinkExploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
PermalinkStreet-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
PermalinkExtracting the urban landscape features of the historic district from street view images based on deep learning: A case study in the Beijing Core area / Siming Yin in ISPRS International journal of geo-information, vol 11 n° 6 (June 2022)
PermalinkExploring the association between street built environment and street vitality using deep learning methods / Yunqin Li in Sustainable Cities and Society, vol 79 (April 2022)
PermalinkUsing street view images to identify road noise barriers with ensemble classification model and geospatial analysis / Kai Zhang in Sustainable Cities and Society, vol 78 (March 2022)
PermalinkUrban infrastructure audit: an effective protocol to digitize signalized intersections by mining street view images / Xiao Li in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
PermalinkPermalinkUrban land-use analysis using proximate sensing imagery: a survey / Zhinan Qiao in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkFlood depth mapping in street photos with image processing and deep neural networks / Bahareh Alizadeh Kharazi in Computers, Environment and Urban Systems, vol 88 (July 2021)
Permalink