Descripteur
Documents disponibles dans cette catégorie (67)



Etendre la recherche sur niveau(x) vers le bas
Investigating the role of image retrieval for visual localization / Martin Humenberger in International journal of computer vision, vol 130 n° 7 (July 2022)
![]()
[article]
Titre : Investigating the role of image retrieval for visual localization Type de document : Article/Communication Auteurs : Martin Humenberger, Auteur ; Yohann Cabon, Auteur ; Noé Pion, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 1811 - 1836 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse visuelle
[Termes IGN] base de données d'images
[Termes IGN] estimation de pose
[Termes IGN] flou
[Termes IGN] localisation basée image
[Termes IGN] localisation basée vision
[Termes IGN] point de repère
[Termes IGN] précision de localisation
[Termes IGN] Ransac (algorithme)
[Termes IGN] réalité de terrain
[Termes IGN] structure-from-motion
[Termes IGN] vision par ordinateurRésumé : (auteur) Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization. Numéro de notice : A2022-538 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01615-7 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1007/s11263-022-01615-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101070
in International journal of computer vision > vol 130 n° 7 (July 2022) . - 1811 - 1836[article]Analysis of pedestrian movements and gestures using an on-board camera to predict their intentions / Joseph Gesnouin (2022)
![]()
Titre : Analysis of pedestrian movements and gestures using an on-board camera to predict their intentions Titre original : Analyse des mouvements et gestes des piétons via caméra embarquée pour la prédiction de leurs intentions Type de document : Thèse/HDR Auteurs : Joseph Gesnouin, Auteur ; Fabien Moutarde, Directeur de thèse Editeur : Paris : Université Paris Sciences et Lettres Année de publication : 2022 Importance : 171 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l'Université Paris Sciences et Lettres, Préparée à MINES ParisTech, Spécialité
Informatique temps réel, robotique et automatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] estimation de pose
[Termes IGN] image RVB
[Termes IGN] instrument embarqué
[Termes IGN] navigation autonome
[Termes IGN] piéton
[Termes IGN] reconnaissance de gestes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] squelettisation
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The autonomous vehicle (AV) is a major challenge for the mobility of tomorrow. Progress is being made every day to achieve it; however, many problems remain to be solved to achieve a safe outcome for the most vulnerable road users (VRUs). One of the major challenge faced by AVs is the ability to efficiently drive in urban environments. Such a task requires interactions between autonomous vehicles and VRUs to resolve traffic ambiguities. In order to interact with VRUs, AVs must be able to understand their intentions and predict their incoming actions. In this dissertation, our work revolves around machine learning technology as a way to understand and predict human behaviour from visual signals and more specifically pose kinematics. Our goal is to propose an assistance system to the AV that is lightweight, scene-agnostic that could be easily implemented in any embedded devices with real-time constraints. Firstly, in the gesture and action recognition domain, we study and introduce different representations for pose kinematics, based on deep learning models as a way to efficiently leverage their spatial and temporal components while staying in an euclidean grid-space. Secondly, in the autonomous driving domain, we show that it is possible to link the posture, the walking attitude and the future behaviours of the protagonists of a scene without using the contextual information of the scene (zebra crossing, traffic light...). This allowed us to divide by a factor of 20 the inference speed of existing approaches for pedestrian intention prediction while keeping the same prediction robustness. Finally, we assess the generalization capabilities of pedestrian crossing predictors and show that the classical train-test sets evaluation for pedestrian crossing prediction, i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor conclude anything about their applicability in a real-world scenario. To make the research field more sustainable and representative of the real advances to come. We propose new protocols and metrics based on uncertainty estimates under domain-shift in order to reach the end-goal of pedestrian crossing behavior predictors: vehicle implementation. Note de contenu : 1- Introduction
2- Human activity recognition with pose-driven deep learning models
3- From action recognition to pedestrian discrete intention prediction
4- Assessing the generalization of pedestrian crossing predictors
5- ConclusionNuméro de notice : 24066 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique temps réel, robotique et automatique : Paris Sciences et Lettres : 2022 DOI : sans En ligne : https://pastel.archives-ouvertes.fr/tel-03813520 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102091 Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments / Daniela Craciun (2022)
![]()
Titre : Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments Type de document : Article/Communication Auteurs : Daniela Craciun , Auteur ; Arnaud Le Bris
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2022, XXIV ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 21 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] estimation de pose
[Termes IGN] géoréférencement
[Termes IGN] gradient
[Termes IGN] histogramme
[Termes IGN] image ancienne
[Termes IGN] milieu naturel
[Termes IGN] modèle numérique de surfaceRésumé : (auteur) Automatic georeferencing for historical-to-nowadays aerial images represents the main ingredient for supplying territory evolution analysis and environmental monitoring. Existing georeferencing methods based on feature extraction and matching reported successful results for multi-epoch aerial images acquired in structured and man-made environments. While improving the state-of-the-art of the multi-epoch georeferencing problem, such frameworks present several limitations when applied to unstructured scenes, such as natural feature-less environments, characterized by homogenous or texture-less areas. This is mainly due to the lack of structured areas which often results in sparse and ambiguous feature matches, introducing inconsistencies during the pose estimation process. This paper addresses the automatic georeferencing problem for historical aerial images acquired in unstructured natural environments. The research work presented in this paper introduces a feature-less algorithm designed to perform historical-to-nowadays image matching for pose estimation in a fully automatic fashion. The proposed algorithm operates within two stages: (i) 2D patch extraction and matching and (ii) 3D patch-based local alignment. The final output is a set of 3D patch matches and the 3D rigid transformation relating each homologous patches. The obtained 3D point matches are designed to be injected into traditional multi-views pose optimisation engines. Experimental results on real datasets acquired over Fabas area situated in France demonstrate the effectiveness of the proposed method. Our findings illustrate that the proposed georeferencing technique provides accurate results in presence of large periods of time separating historical from nowadays aerial images (up to 48 years time span). Numéro de notice : C2022-020 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2022-21-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-21-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100846
Titre : Feature matching for multi-epoch historical aerial images Titre original : Appariement des caractéristiques pour les images aériennes historiques multi-époques Type de document : Thèse/HDR Auteurs : Lulin Zhang , Auteur ; Marc Pierrot-Deseilligny
, Directeur de thèse ; Ewelina Rupnik
, Directeur de thèse
Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2022 Importance : 142 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] auto-étalonnage
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] estimation de pose
[Termes IGN] image ancienne
[Termes IGN] image multitemporelleRésumé : (auteur) L'imagerie historique se caractérise par une haute résolution spatiale et des acquisitions stéréoscopiques. Elle constitue une ressource précieuse pour la détection des changements et la surveillance environnementale à long terme. Des millions d'images historiques ont été numérisées. Elles sont des témoins objectifs du temps et parfois la seule source visuelle restante de la forme historique du territoire. Cependant, l'énorme potentiel des images historiques diachroniques est supprimé en raison du goulot d'étranglement que constitue leur géoréférencement précis. Il s'agit d'un processus appelé ajustement de faisceau auto-calibré pour estimer les paramètres de calibrage de la caméra. Il faut un nombre suffisant de correspondances dans des paysages évolutifs, qui sont difficiles à obtenir automatiquement, en raison des changements de scène et des conditions hétérogènes d'acquisition des images.Dans cette recherche, nous présentons des pipelines entièrement automatiques pour trouver des correspondances entre des images historiques prises à différents temps (c'est-à-dire, inter-époques), sans données auxiliaires nécessaires. En profitant de la géométrie 3D et de la stratégie grossier-à-précis, nous (1) enregistrons grossièrement les différentes époques en établissant un modèle de transformation globalement cohérent sur l'ensemble du bloc, et (2) nous apparions précisément les images inter-époques sous la direction du co-enregistrement grossier pour réduire l'ambiguïté. Six variantes de deux stratégies sont explorées pour l'étape de co-enregistrement grossier, et deux variantes pour l'étape d'appariement précis. Nos pipelines sont adaptés à diverses applications de surveillance environnementale. Cinq données représentatifs sont choisis pour les expériences, chacun représentant une application caractéristique. Avec les correspondances inter-époques récupérées, nous améliorons les orientations de l'image puis calculons les Digital Surface Models (DSMs) à chaque époque, et évaluons quantitativement les résultats avec les Difference of DSMs (DoDs) et le déplacement du sol dû à un séisme. Nous démontrons que notre méthode (1) peut géoréférencer automatiquement des images historiques diachroniques ; (2) peut atténuer efficacement les erreurs systématiques induites par des paramètres de caméra mal estimés ; et (3) est robuste contre les changements drastiques de la scène. Les pipelines proposés sont mis en œuvre dans MicMac, un logiciel de photogrammétrie libre et gratuit. Numéro de notice : 17733 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse : Traitement d'image : Gustave Eiffel : 2022 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans En ligne : https://theses.hal.science/tel-03852938 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100652
Titre : Reshaping perception for autonomous driving with semantic keypoints Type de document : Thèse/HDR Auteurs : Lorenzo Bertoni, Auteur Editeur : Lausanne : Ecole Polytechnique Fédérale de Lausanne EPFL Année de publication : 2022 Importance : 177 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du grade de Docteur ès Sciences, Ecole Polytechnique Fédérale de LausanneLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] détection d'objet
[Termes IGN] détection de piéton
[Termes IGN] estimation de pose
[Termes IGN] navigation autonome
[Termes IGN] système multi-agents
[Termes IGN] vision par ordinateurRésumé : (auteur) The field of artificial intelligence is set to fuel the future of mobility by driving forward the transition from advanced driver-assist systems to fully autonomous vehicles (AV). Yet the current technology, backed by cutting-edge deep learning techniques, still leads to fatal accidents and does not convey trust. Current frameworks for 3D perception tasks, such as 3D object detection, are not adequate as they (i) do not generalize well to new scenarios, (ii) do not take into account measures of confidence in their predictions, and (iii) are not suitable for large-scale deployment as mainly based on costly LiDAR sensors. This doctoral thesis aims to study vision-based deep learning frameworks that can accurately perceive the world in 3D and generalize to new scenarios. We propose to escape the pixel domain using semantic keypoints, a sparse representation for every object in the scene containing meaningful information for 2D and 3D reasoning. The low-dimensionality enables downstream neural networks to focus on essential elements in the scene and improve their generalization capabilities. Furthermore, driven by the limitation of deep learning architectures outputting point estimates, we study how to estimate a confidence interval for each prediction. In particular, we emphasize vulnerable road users, such as pedestrians and cyclists, and explicitly address the long tail of 3D pedestrian detection to contribute to the safety of our roads. We further show the efficacy of our framework on multiple real-world domains by (a) integrating it in an existing AV pipeline, (b) detecting human-robot eye contact in real-world scenarios, and (c) helping verify the compliance of safety measures in the case of the COVID-19 outbreak. Finally, we publicly release the source code of all our projects and develop a unified library to contribute to an open science mission. Note de contenu : 1- Introduction
2- Semantic keypoints detection
3- Monocular 3D pedestrian localization and uncertainty estimation
4- Tackling the long tail of 3D pedestrian localization with stereo cameras
5- Autonomous driving applications of pedestrian 3D detection
6- Detecting pedestrians attention: Human-robot eye contact in the wild
7- Beyond autonomous driving: Social interactions and social distancing
8- ConclusionNuméro de notice : 24077 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences : EPFL : 2022 DOI : 10.5075/epfl-thesis-10072 En ligne : https://doi.org/10.5075/epfl-thesis-10072 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102212 Robust GNSS carrier phase-based position and attitude estimation theory and applications / Daniel Arias Medina (2022)
PermalinkPermalinkFully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods / Ferdinand Maiwald in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkPose estimation and 3D reconstruction of vehicles from stereo-images using a subcategory-aware shape prior / Maximilian Alexander Coenen in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
PermalinkSpherically optimized RANSAC aided by an IMU for Fisheye Image Matching / Anbang Liang in Remote sensing, vol 13 n°10 (May-2 2021)
PermalinkA skyline-based approach for mobile augmented reality / Mehdi Ayadi in The Visual Computer, vol 37 n° 4 (April 2021)
PermalinkVisual positioning in indoor environments using RGB-D images and improved vector of local aggregated descriptors / Longyu Zhang in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)
PermalinkSemi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
PermalinkApprentissage profond et IA pour l’amélioration de la robustesse des techniques de localisation par vision artificielle / Achref Elouni (2021)
PermalinkPermalink