Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse d'image orientée objet > recherche d'image basée sur le contenu
recherche d'image basée sur le contenu |
Documents disponibles dans cette catégorie (34)



Etendre la recherche sur niveau(x) vers le bas
Effective CBIR based on hybrid image features and multilevel approach / D. Latha in Multimedia tools and applications, vol 81 n° 20 (August 2022)
![]()
[article]
Titre : Effective CBIR based on hybrid image features and multilevel approach Type de document : Article/Communication Auteurs : D. Latha, Auteur ; A. Geetha, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'images
[Termes IGN] écart type
[Termes IGN] espace colorimétrique
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)
[Termes IGN] observation multiniveaux
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] saturation de la couleur
[Termes IGN] texture d'image
[Termes IGN] transformation intensité-teinte-saturationRésumé : (auteur) Content based image retrieval (CBIR) process can retrieve images by matching its feature set values. The proposed novel CBIR methodology called Effective CBIR based on hybrid image features and multilevel approach (CBIR_LTP_GLCM) integrates the hybrid features such as color features and texture features, along with multilevel approach. The color features such as mean and standard deviation are adopted in the proposed method to represent the global color properties of an image. This method manipulates the color input-image by processing the Hue, Saturation and Value channels of the HSV color space. This novel work is enriched with the image feature derived from Local Ternary Pattern (LTP) in addition with GLCM. So, the proposed method CBIR_LTP_GLCM is potentially charged with meaningful modifications travelling with color image manipulation and extended image retrieval accuracy with the aid of multilevel approach. The proposed methodology is experimentally compared with the existing recent CBIR versions by using the standard database such as Corel-1 k, and a user contributed database named DB_VEG. Numéro de notice : A2022-291 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11042-022-12588-7 Date de publication en ligne : 30/03/2022 En ligne : https://doi.org/10.1007/s11042-022-12588-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100337
in Multimedia tools and applications > vol 81 n° 20 (August 2022) . - pp[article]Exploring scientific literature by textual and image content using DRIFT / Ximena Pocco in Computers and graphics, vol 103 (April 2022)
![]()
[article]
Titre : Exploring scientific literature by textual and image content using DRIFT Type de document : Article/Communication Auteurs : Ximena Pocco, Auteur ; Tiago da Silva, Auteur ; Jorge Poco, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse visuelle
[Termes IGN] bibliothèque numérique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corpus
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] recherche scientifique
[Termes IGN] similitude sémantiqueRésumé : (auteur) Digital libraries represent the most valuable resource for storing, querying, and retrieving scientific literature. Traditionally, the reader/analyst aims to compose a set of articles based on keywords, according to his/her preferences, and manually inspect the resulting list of documents. Except for the articles which share citations or common keywords, the results retrieved will be limited to those which fulfill a syntactic match. Besides, if instead of having an article as a reference, the user has an image, the process of finding and exploring articles with similar content becomes infeasible. This paper proposes a visual analytic methodology for exploring and analyzing scientific document collections that consider both textual and image content. The proposed technique relies on combining multiple Content-Based Image Retrieval (CBIR) components and multidimensional projection to map the documents to a visual space based on their similarity, thus enabling an interactive exploration. Moreover, we extend its analytical capabilities with visual resources to display complementary information on selected documents that uncover hidden patterns and semantic relations. We evidence the effectiveness of our methodology through three case studies and a user evaluation, which attest to its usefulness during the process of scientific collections exploration. Numéro de notice : A2022-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cag.2022.02.005 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.1016/j.cag.2022.02.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100332
in Computers and graphics > vol 103 (April 2022) . - pp 140 - 152[article]Automatic structuring of photographic collections for spatio-temporal monitoring of restoration sites: problem statement and challenges / Laura Willot (2022)
![]()
Titre : Automatic structuring of photographic collections for spatio-temporal monitoring of restoration sites: problem statement and challenges Type de document : Article/Communication Auteurs : Laura Willot, Auteur ; D. Vodislav, Auteur ; Livio de Luca, Auteur ; Valérie Gouet-Brunet , Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 46-2-W1 Projets : Alegoria / Gouet-Brunet, Valérie Conférence : 3D-ARCH 2022, 9th International Workshop 3D-ARCH "3D Virtual Reconstruction and Visualization of Complex Architectures" 02/03/2022 04/03/2022 Mantua Italie OA ISPRS Archives Importance : pp 521 - 528 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] cathédrale
[Termes IGN] enrichissement sémantique
[Termes IGN] image
[Termes IGN] mesure de similitude
[Termes IGN] modèle conceptuel de données
[Termes IGN] Paris (75)
[Termes IGN] patrimoine documentaire
[Termes IGN] recherche d'image basée sur le contenuRésumé : (auteur) Over the last decade, a large number of digital documentation projects have demonstrated the potential of image-based modelling of heritage objects in the context of documentation, conservation, and restoration. The inclusion of these emerging methods in the daily monitoring of the activities of a heritage restoration site (context in which hundreds of photographs per day can be acquired by multiple actors, in accordance with several observation and analysis needs) raises new questions at the intersection of big data management, analysis, semantic enrichment, and more generally automatic structuring of this data. In this article, we propose a data model developed around these questions and identify the main challenges to overcome the problem of structuring massive collections of photographs through a review of the available literature on similarity metrics used to organise the pictures based on their content or metadata. This work is realized in the context of the restoration site of the Notre-Dame de Paris cathedral that will be used as the main case study. Numéro de notice : C2022-003 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-xlvi-2-w1- 2022-521-2022 Date de publication en ligne : 25/02/2022 En ligne : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-2-W1-2022/5 [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100315 Effective triplet mining improves training of multi-scale pooled CNN for image retrieval / Federico Vaccaro in Machine Vision and Applications, vol 33 n° 1 (January 2022)
![]()
[article]
Titre : Effective triplet mining improves training of multi-scale pooled CNN for image retrieval Type de document : Article/Communication Auteurs : Federico Vaccaro, Auteur ; Marco Bertini, Auteur ; Tiberio Uricchio, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agrégation de données
[Termes IGN] analyse visuelle
[Termes IGN] architecture de réseau
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] réseau neuronal siamois
[Termes IGN] tripletRésumé : (auteur) In this paper, we address the problem of content-based image retrieval (CBIR) by learning images representations based on the activations of a Convolutional Neural Network. We propose an end-to-end trainable network architecture that exploits a novel multi-scale local pooling based on the trainable aggregation layer NetVLAD (Arandjelovic et al in Proceedings of the IEEE conference on computer vision and pattern recognition CVPR, NetVLAD, 2016) and bags of local features obtained by splitting the activations, allowing to reduce the dimensionality of the descriptor and to increase the performance of retrieval. Training is performed using an improved triplet mining procedure that selects samples based on their difficulty to obtain an effective image representation, reducing the risk of overfitting and loss of generalization. Extensive experiments show that our approach, that can be effectively used with different CNN architectures, obtains state-of-the-art results on standard and challenging CBIR datasets. Numéro de notice : A2022-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00138-021-01260-z Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1007/s00138-021-01260-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100153
in Machine Vision and Applications > vol 33 n° 1 (January 2022) . - n° 16[article]Fully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods / Ferdinand Maiwald in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
![]()
[article]
Titre : Fully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods Type de document : Article/Communication Auteurs : Ferdinand Maiwald, Auteur ; Christoph Lehmann, Auteur ; Taras Lazariv, Auteur Année de publication : 2021 Article en page(s) : n° 748 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] apprentissage automatique
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] échelle de temps
[Termes IGN] estimation de pose
[Termes IGN] image ancienne
[Termes IGN] image terrestre
[Termes IGN] métadonnées
[Termes IGN] modélisation 4D
[Termes IGN] patrimoine culturel
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] récupération de données
[Termes IGN] structure-from-motion
[Termes IGN] système d'information géographiqueRésumé : (auteur) The idea of virtual time machines in digital environments like hand-held virtual reality or four-dimensional (4D) geographic information systems requires an accurate positioning and orientation of urban historical images. The browsing of large repositories to retrieve historical images and their subsequent precise pose estimation is still a manual and time-consuming process in the field of Cultural Heritage. This contribution presents an end-to-end pipeline from finding relevant images with utilization of content-based image retrieval to photogrammetric pose estimation of large historical terrestrial image datasets. Image retrieval as well as pose estimation are challenging tasks and are subjects of current research. Thereby, research has a strong focus on contemporary images but the methods are not considered for a use on historical image material. The first part of the pipeline comprises the precise selection of many relevant historical images based on a few example images (so called query images) by using content-based image retrieval. Therefore, two different retrieval approaches based on convolutional neural networks (CNN) are tested, evaluated, and compared with conventional metadata search in repositories. Results show that image retrieval approaches outperform the metadata search and are a valuable strategy for finding images of interest. The second part of the pipeline uses techniques of photogrammetry to derive the camera position and orientation of the historical images identified by the image retrieval. Multiple feature matching methods are used on four different datasets, the scene is reconstructed in the Structure-from-Motion software COLMAP, and all experiments are evaluated on a newly generated historical benchmark dataset. A large number of oriented images, as well as low error measures for most of the datasets, show that the workflow can be successfully applied. Finally, the combination of a CNN-based image retrieval and the feature matching methods SuperGlue and DISK show very promising results to realize a fully automated workflow. Such an automated workflow of selection and pose estimation of historical terrestrial images enables the creation of large-scale 4D models. Numéro de notice : A2021-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110748 Date de publication en ligne : 04/11/2021 En ligne : https://doi.org/10.3390/ijgi10110748 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98964
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - n° 748[article]Connecting images through sources: Exploring low-data, heterogeneous instance retrieval / Dimitri Gominski in Remote sensing, vol 13 n° 16 (August-2 2021)
PermalinkSemantic signatures for large-scale visual localization / Li Weng in Multimedia tools and applications, vol 80 n° 15 (June 2021)
PermalinkConnecting images through time and sources: Introducing low-data, heterogeneous instance retrieval / Dimitri Gominski (2021)
PermalinkPermalinkDescription et recherche d’image généralisables pour l’interconnexion et l’analyse multi-source / Dimitri Gominski (2021)
PermalinkPermalinkSUMAC'21: Proceedings of the 3rd Workshop on Structuring and Understanding of Multimedia heritAge Contents / Valérie Gouet-Brunet (2021)
PermalinkUnifying remote sensing image retrieval and classification with robust fine-tuning / Dimitri Gominski (2021)
PermalinkIndoor positioning using PnP problem on mobile phone images / Hana Kubickova in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
PermalinkPermalink