Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > régression > régression des moindres carrés partiels
régression des moindres carrés partielsSynonyme(s)régression PLS |



Etendre la recherche sur niveau(x) vers le bas
Estimating the impacts of proximity to public transportation on residential property values: An empirical analysis for Hartford and Stamford areas, Connecticut / Bo Zhang in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
![]()
[article]
Titre : Estimating the impacts of proximity to public transportation on residential property values: An empirical analysis for Hartford and Stamford areas, Connecticut Type de document : Article/Communication Auteurs : Bo Zhang, Auteur ; Weidong Li, Auteur ; Nicholas Lownes, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 44 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse de la valeur
[Termes descripteurs IGN] bien immobilier
[Termes descripteurs IGN] Connecticut (Etats-Unis)
[Termes descripteurs IGN] logement
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] transport public
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Public transit infrastructure may increase residential property values by improving accessibility and reducing commute expenses in urban areas. Prior studies have investigated the impacts of the proximity to public transportation on property values and obtained mixed conclusions. Many of these studies were focused on one transit mode for a single city. In this study, a hedonic pricing model is constructed to investigate the impacts of commuter rail/Bus Rapid Transit (BRT) and bus lines separately in two different areas: the Stamford area (Stamford–Darien–New Canaan) and the Hartford area (Hartford–West Hartford–East Hartford), Connecticut. Comparison of the results from Ordinary Least Square and Geographically Weighted Regression (GWR) indicates that estimation accuracy can be improved by considering local variation. Results from GWR show that impacts of proximity to bus and rail/BRT on property values vary spatially in the Hartford area. Negative impacts of bus stops are found in downtown Hartford and positive impacts in the west and east sides of Hartford. Impacts from rail/BRT are relatively minor compared with bus lines, partly due to the relatively recent launching of the BRT and Hartford rail line. In contrast, most properties in the Stamford area show appreciation towards rail service and depreciation to bus service. This study reveals the roles of different public transit systems in affecting residential property values. It also provides empirical evidence for future transit-oriented development in this region for uplifting the real estate market. Numéro de notice : A2021-154 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10020044 date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.3390/ijgi10020044 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97065
in ISPRS International journal of geo-information > vol 10 n° 2 (February 2021) . - n° 44[article]Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
![]()
[article]
Titre : Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands Type de document : Article/Communication Auteurs : Bappa Das, Auteur ; Rabi N. Sahoo, Auteur ; Sourabh Pargal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1415 - 1432 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] image EO1-Hyperion
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] séparateur à vaste marge
[Termes descripteurs IGN] spectroradiomètreRésumé : (auteur) Successful retrieval of leaf area index (LAI) from hyperspectral remote sensing relies on the proper selection of indices or multivariate models. The objectives of the research work were to identify best vegetation index and multivariate model based on canopy reflectance and LAI measured at different growth stages of wheat. Comparison of existing indices revealed optimized soil-adjusted vegetation index (OSAVI) as the best index based on R2 of calibration, validation and root mean square error of validation. Proposed ratio index (RI; R670, R845) and normalized difference index (NDI; R670, R845) provided comparable performance with the existing vegetation indices (R2 = 0.65 and 0.62 for RI and NDI, respectively, during validation). Among the multivariate models, partial least squares regression (PLSR) model with Hyperion band configuration performed the best during validation (R2 = 0.80 and RMSE = 0.58 m2 m−2). Our results manifested the opportunities for developing biophysical products based on satellite sensors. Numéro de notice : A2020-607 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581271 date de publication en ligne : 28/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95967
in Geocarto international > vol 35 n° 13 [01/10/2020] . - pp 1415 - 1432[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020101 SL Revue Centre de documentation Revues en salle Disponible Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
![]()
[article]
Titre : Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed Type de document : Article/Communication Auteurs : Qinghu Jiang, Auteur ; Yiyun Chen, Auteur ; Jialiang Hu, Auteur ; Feng Liu, Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image visible
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] sol arable
[Termes descripteurs IGN] spectroscopie
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) This study aimed to assess the ability of using visible and near-infrared reflectance (Vis–NIR) spectroscopy to quantify soil erodibility factor (K) rapidly in an ecologically restored watershed. To achieve this goal, we explored the performance and transferability of the developed spectral models in multiple land-use types: woodland, shrubland, terrace, and slope farmland (the first two types are natural land and the latter two are cultivated land). Subsequently, we developed an improved approach by combining spectral data with related topographic variables (i.e., elevation, watershed location, slope height, and normalized height) to estimate K. The results indicate that the calibrated spectral model using total samples could estimate K factor effectively (R2CV = 0.71, RMSECV = 0.0030 Mg h Mj−1 mm−1, and RPDCV = 1.84). When predicting K in the new samples, models performed well in natural land soils (R2P = 0.74, RPDP = 1.93) but failed in cultivated land soils (R2P = 0.24, RPDP = 0.99). Furthermore, the developed models showed low transferability between the natural and cultivated land datasets. The results also indicate that the combination of spectral data with topographic variables could slightly increase the accuracies of K estimation in total and natural land datasets but did not work for cultivated land samples. This study demonstrated that the Vis–NIR spectroscopy could be used as an effective method in predicting K. However, the predictability and transferability of the calibrated models were land-use type dependent. Our study also revealed that the coupling of spectrum and environmental variable is an effective improvement of K estimation in natural landscape region Numéro de notice : A2020-631 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183103 date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.3390/rs12183103 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96052
in Remote sensing > vol 12 n° 18 (September 2020) . - 16 p.[article]Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization / Ning Liu in Remote sensing, vol 12 n° 17 (September 2020)
![]()
[article]
Titre : Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization Type de document : Article/Communication Auteurs : Ning Liu, Auteur ; Zizheng Xing, Auteur ; Ruomei Zhao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 22 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] azote
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] pomme de terre
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) The analysis of chlorophyll concentration based on spectroscopy has great importance for monitoring the growth state and guiding the precision nitrogen management of potato crops in the field. A suitable data processing and modeling method could improve the stability and accuracy of chlorophyll analysis. To develop such a method, we collected the modelling data by conducting field experiments at the tillering, tuber-formation, tuber-bulking, and tuber-maturity stages in 2018. A chlorophyll analysis model was established using the partial least-square (PLS) algorithm based on original reflectance, standard normal variate reflectance, and wavelet features (WFs) under different decomposition scales (21–210, Scales 1–10), which were optimized by the competitive adaptive reweighted sampling (CARS) algorithm. The performances of various models were compared. The WFs under Scale 3 had the strongest correlation with chlorophyll concentration with a correlation coefficient of −0.82. In the model calibration process, the optimal model was the Scale3-CARS-PLS, which was established based on the sensitive WFs under Scale 3 selected by CARS, with the largest coefficient of determination of calibration set (R2c) of 0.93 and the smallest R2c−R2cv value of 0.14. In the model validation process, the Scale3-CARS-PLS model had the largest coefficient of determination of validation set (R2v) of 0.85 and the smallest root–mean–square error of cross-validation (RMSEV) value of 2.77 mg/L, demonstrating good prediction capability of chlorophyll concentration. Finally, the analysis performance of the Scale3-CARS-PLS model was measured using the testing data collected in 2020; the R2 and RMSE values were 0.69 and 3.36 mg/L, showing excellent applicability. Therefore, the Scale3-CARS-PLS model could be used to analyze chlorophyll concentration. This study indicated the best decomposition scale of continuous wavelet transform and provided an important support method for chlorophyll analysis in the potato crops. Numéro de notice : A2020-600 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12172826 date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.3390/rs12172826 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95950
in Remote sensing > vol 12 n° 17 (September 2020) . - 22 p.[article]Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging Type de document : Article/Communication Auteurs : Bo Li, Auteur ; Xiangming Xu, Auteur ; Li Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 161 -1 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biomasse aérienne
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] couvert végétal
[Termes descripteurs IGN] hauteur de la végétation
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] pomme de terre
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] rendement agricoleRésumé : (auteur) Rapid and accurate biomass and yield estimation facilitates efficient plant phenotyping and site-specific crop management. A low altitude unmanned aerial vehicle (UAV) was used to acquire RGB and hyperspectral imaging data for a potato crop canopy at two growth stages to estimate the above-ground biomass and predict crop yield. Field experiments included six cultivars and multiple treatments of nitrogen, potassium, and mixed compound fertilisers. Crop height was estimated using the difference between digital surface model and digital elevation models derived from RGB imagery. Combining with two narrow-band vegetation indices selected by the RReliefF feature selection algorithm. Random Forest regression models demonstrated high prediction accuracy for both fresh and dry above-ground biomass, with a coefficient of determination (r2) > 0.90. Crop yield was predicted using four narrow-band vegetation indices and crop height (r2 = 0.63) with imagery data obtained 90 days after planting. A Partial Least Squares regression model based on the full wavelength spectra demonstrated improved yield prediction (r2 = 0.81). This study demonstrated the merits of UAV-based RGB and hyperspectral imaging for estimating the above-ground biomass and yield of potato crops, which can be used to assist in site-specific crop management. Numéro de notice : A2020-125 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.013 date de publication en ligne : 28/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.013 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94750
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 161 -1 72[article]A new bioclimatic model calibrated with vegetation for Mediterranean forest areas / Michel Vennetier in Annals of Forest Science, Vol 65 n° 7 (October - November 2008)
Permalink