Descripteur
Termes descripteurs IGN > sciences humaines et sociales > économie > macroéconomie > secteur tertiaire > secteur de l'information > média > internet > toile d'araignée mondiale > réseau social > réseau social géodépendant
réseau social géodépendantSynonyme(s)FoursquareVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
RegNet: a neural network model for predicting regional desirability with VGI data / Wenzhong Shi in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : RegNet: a neural network model for predicting regional desirability with VGI data Type de document : Article/Communication Auteurs : Wenzhong Shi, Auteur ; Zhewei Liu, Auteur ; Zhenlin An, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 175 - 192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] niveau local
[Termes descripteurs IGN] participation du public
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] réseau social géodépendantRésumé : (auteur) Volunteered geographic information can be used to predict regional desirability. A common challenge regarding previous works is that intuitive empirical models, which are inaccurate and bring in perceptual bias, are traditionally used to predict regional desirability. This results from the fact that the hidden interactions between user online check-ins and regional desirability have not been revealed and clearly modelled yet. To solve the problem, a novel neural network model ‘RegNet’ is proposed. The user check-in history is input into a neural network encoder structure firstly for redundancy reduction and feature learning. The encoded representation is then fed into a hidden-layer structure and the regional desirability is predicted. The proposed RegNet is data-driven and can adaptively model the unknown mappings from input to output, without presumed bias and prior knowledge. We conduct experiments with real-world datasets and demonstrate RegNet outperforms state-of-the-art methods in terms of ranking quality and prediction accuracy of rating. Additionally, we also examine how the structure of encoder affects RegNet performance and suggest on choosing proper sizes of encoded representation. This work demonstrates the effectiveness of data-driven methods in modelling the hidden unknown relationships and achieving a better performance over traditional empirical methods. Numéro de notice : A2021-023 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768261 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768261 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96526
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 175 - 192[article]Los Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
![]()
[article]
Titre : Los Angeles as a digital place: The geographies of user‐generated content Type de document : Article/Communication Auteurs : Andrea Ballatore, Auteur ; Stefano de Sabbata, Auteur Année de publication : 2020 Article en page(s) : 23 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] centre urbain
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données multisources
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] exploration de données géographiques
[Termes descripteurs IGN] Foursquare
[Termes descripteurs IGN] Los Angeles
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] participation du public
[Termes descripteurs IGN] représentation géographique
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] TwitterRésumé : (auteur) Online representations of places are becoming pivotal in informing our understanding of urban life. Content production on online platforms is grounded in the geography of their users and their digital infrastructure. These constraints shape place representation, that is, the amount, quality, and type of digital information available in a geographic area. In this article we study the place representation of user‐generated content (UGC) in Los Angeles County, relating the spatial distribution of the data to its geo‐demographic context. Adopting a comparative and multi‐platform approach, this quantitative analysis investigates the spatial relationship between four diverse UGC datasets and their context at the census tract level (about 685,000 geo‐located tweets, 9,700 Wikipedia pages, 4 million OpenStreetMap objects, and 180,000 Foursquare venues). The context includes the ethnicity, age, income, education, and deprivation of residents, as well as public infrastructure. An exploratory spatial analysis and regression‐based models indicate that the four UGC platforms possess distinct geographies of place representation. To a moderate extent, the presence of Twitter, OpenStreetMap, and Foursquare data is influenced by population density, ethnicity, education, and income. However, each platform responds to different socio‐economic factors and clusters emerge in disparate hotspots. Unexpectedly, Twitter data tend to be located in denser, more deprived areas, and the geography of Wikipedia appears peculiar and harder to explain. These trends are compared with previous findings for the area of Greater London. Numéro de notice : A2020-671 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12600 date de publication en ligne : 02/01/2020 En ligne : https://doi.org/10.1111/tgis.12600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96156
in Transactions in GIS > Vol 24 n° 4 (August 2020) . - 23 p.[article]A name‐led approach to profile urban places based on geotagged Twitter data / Juntao Lai in Transactions in GIS, Vol 24 n° 4 (August 2020)
![]()
[article]
Titre : A name‐led approach to profile urban places based on geotagged Twitter data Type de document : Article/Communication Auteurs : Juntao Lai, Auteur ; Guy Lansley, Auteur ; James Haworth, Auteur ; Tao Cheng, Auteur Année de publication : 2020 Article en page(s) : 22 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] approche participative
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] Foursquare
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] site urbain
[Termes descripteurs IGN] toponyme
[Termes descripteurs IGN] TwitterRésumé : (auteur) Place is a concept that is fundamental to how we orientate and communicate space in our everyday lives. Crowdsourced social media data present a valuable opportunity to develop bottom‐up inferences of places that are integral to social activities and settings. Conventional location‐led approaches use a predefined spatial unit to associate data and space with places, which cannot capture the richness of urban places (i.e., spatial extents and their dynamic functions). This article develops a name‐led framework to overcome these limitations in using social media data to study urban places. The framework first derives place names from georeferenced Twitter data combining text mining and spatial point pattern analysis, then estimates the spatial extents by spatial clustering, and further extracts their dynamic functions with time, which makes up a complete place profile. The framework is tested on a case study in Camden Borough, London and the results are evaluated through comparisons to the Foursquare point of interest data. This name‐led approach enables the shift from space‐based analysis to place‐based analysis of urban space. Numéro de notice : A2020-670 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12599 date de publication en ligne : 05/12/2019 En ligne : https://doi.org/10.1111/tgis.12599 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96155
in Transactions in GIS > Vol 24 n° 4 (August 2020) . - 22 p.[article]Behavior-based location recommendation on location-based social networks / Seyyed Mohammadreza Rahimi in Geoinformatica [en ligne], vol 24 n° 3 (July 2020)
![]()
[article]
Titre : Behavior-based location recommendation on location-based social networks Type de document : Article/Communication Auteurs : Seyyed Mohammadreza Rahimi, Auteur ; Behrouz Far, Auteur ; Xin Wang, Auteur Année de publication : 2020 Article en page(s) : pp 477 – 504 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] interface web
[Termes descripteurs IGN] modèle conceptuel de données localisées
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] système de recommandationRésumé : (auteur) Location recommendation methods on location-based social networks (LBSN) discover the locational preference of users along with their spatial movement patterns from users’ check-ins and provide users with recommendations of unvisited places. The growing popularity of LBSNs and abundance of shared location information has made location recommendation an active research area in the recent years. However, the existing methods suffer from one or more deficiencies such as data sparsity, cold-start users, ignoring users’ specific spatial and temporal behaviors, not utilizing the shared behaviors of the users. In this paper, we propose a novel location recommendation method, namely Behavior-based Location Recommendation (BLR). BLR recommends a location to a user based on the users’ repetitive behaviors and behaviors of similar users. Additionally, to better integrate the spatial information, BLR has two spatial components, a user-based spatial component to find the spatial preferences of the user, and a behavior-based spatial component to find locations of interest for different behaviors. Experimental studies on three real-world datasets show that BLR produces better location recommendations and can effectively address data sparsity and cold-start problems. Numéro de notice : A2020-370 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-019-00360-3 date de publication en ligne : 25/05/2019 En ligne : https://doi.org/10.1007/s10707-019-00360-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95265
in Geoinformatica [en ligne] > vol 24 n° 3 (July 2020) . - pp 477 – 504[article]Learning evolving user’s behaviors on location-based social networks / Ruizhi Wu in Geoinformatica [en ligne], vol 24 n° 3 (July 2020)
![]()
[article]
Titre : Learning evolving user’s behaviors on location-based social networks Type de document : Article/Communication Auteurs : Ruizhi Wu, Auteur ; Guangchun Luo, Auteur ; Qi jin, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 713 – 743 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] filtrage d'information
[Termes descripteurs IGN] géopositionnement
[Termes descripteurs IGN] interaction homme-milieu
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] utilisateurRésumé : (auteur) With the popularity of smart phones, users’ activities on location-based social networks (LBSNs) evolve faster than traditional social networks. Existing models focus on modeling users’ long-term preferences, leveraging social collaborative filtering to enhance prediction performance. However, the dynamic mobility mechanism of user’s check-in behaviors on LBSNs is seldom considered. In this paper, we propose a new dynamic model that considers both geo-aware user preferences and the social interaction excitation arising from social connections to learn the dynamic mobility mechanism of user’s behaviors on LBSNs. Geo-aware location features, such as semantic features, latent features and dynamic features, are utilized to characterize the location information and reveal the evolution of the geographical impact of location. These geo-aware location features enable us to exploit user’s personal preferences. Meanwhile, we integrate a user’s social connections and friends’ preferences for modeling social interaction excitations. Finally, we jointly incorporate geo-aware user preference learning and social interaction excitation modeling to create a conditional intensity function for temporal point processes with which to explore the dynamic mobility mechanism of evolving user’s check-in behaviors on LBSNs. Extensive experiments on several real-world check-in datasets confirm that our proposed algorithm performs better than existing state-of-the-art methods. Numéro de notice : A2020-372 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00400-3 date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1007/s10707-020-00400-3 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95267
in Geoinformatica [en ligne] > vol 24 n° 3 (July 2020) . - pp 713 – 743[article]Assessing spatiotemporal predictability of LBSN : a case study of three Foursquare datasets / Ming Li in Geoinformatica [en ligne], vol 22 n° 3 (July 2018)
PermalinkWhat is so “hot” in heatmap? qualitative code cluster analysis with foursquare venue / Ilyoung Hong in Cartographica, vol 52 n° 4 (Winter 2017)
PermalinkExtracting urban functional regions from points of interest and human activities on location-based social networks / Song Gao in Transactions in GIS, vol 21 n° 3 (June 2017)
PermalinkRecommendations in location-based social networks: a survey / Jie Bao in Geoinformatica [en ligne], vol 19 n° 3 (July - September 2015)
Permalink