Descripteur
Termes IGN > 1- Descripteurs géographiques > monde (géographie politique) > Asie (géographie politique) > Chine > Kouangtoung (Chine) > Shenzhen
ShenzhenVoir aussi |
Documents disponibles dans cette catégorie (20)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model / Zensheng Wang in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Measuring spatial nonstationary effects of POI-based mixed use on urban vibrancy using Bayesian spatially varying coefficients model Type de document : Article/Communication Auteurs : Zensheng Wang, Auteur ; Feidong Lu, Auteur ; Zhaohui Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 339 - 359 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] approche hiérarchique
[Termes IGN] classification bayesienne
[Termes IGN] dynamique spatiale
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] planification urbaine
[Termes IGN] point d'intérêt
[Termes IGN] Shenzhen
[Termes IGN] téléphonie mobile
[Termes IGN] urbanisation
[Termes IGN] utilisation du solRésumé : (auteur) Understanding the relationship between mixed land use and urban vibrancy is vital in advanced urban planning applications. This study presents a Bayesian spatially varying coefficient (SVC) model to explore the spatially nonstationary relationship between mixed land use and urban vibrancy after controlling for other factors. We first use the convolutional conditional autoregressive prior to accommodate the ecological bias resulting from unobserved confounders. Then we develop our approach in the case of a single predictor to allow the spatially varying coefficient process. We further introduce a type of the Bayesian SVC model that considers the stratified heterogeneity of the outcome, allowing the coefficients to simultaneously vary at the local and subregion level. We illustrate the proposed model by conducting a case study in Shenzhen using mobile phone data, an officially registered point-of-interest (POI) dataset, and several supplementary datasets. The model evaluation results show that including spatially unstructured and structured component combinations can improve the model's fitness and predictive ability; additionally, considering spatial stratified heterogeneity can further enhance the model's performance. Our findings provide an alternative for measuring the variable local-scale association between mixed-use and urban vibrancy and offer new insights that broaden the fields of environmental science and spatial statistics. Numéro de notice : A2023-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2117363 En ligne : https://doi.org/10.1080/13658816.2022.2117363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102393
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 339 - 359[article]Sensing urban soundscapes from street view imagery / Tianhong Zhao in Computers, Environment and Urban Systems, vol 99 (January 2023)
[article]
Titre : Sensing urban soundscapes from street view imagery Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Xiucheng Liang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] bruit (audition)
[Termes IGN] distribution spatiale
[Termes IGN] image Streetview
[Termes IGN] paysage sonore
[Termes IGN] planification urbaine
[Termes IGN] pollution acoustique
[Termes IGN] Shenzhen
[Termes IGN] Singapour
[Termes IGN] ville durable
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) A healthy acoustic environment is an essential component of sustainable cities. Various noise monitoring and simulation techniques have been developed to measure and evaluate urban sounds. However, sensing large areas at a fine resolution remains a great challenge. Based on machine learning, we introduce a new application of street view imagery — estimating large-area high-resolution urban soundscapes, investigating the premise that we can predict and characterize soundscapes without laborious and expensive noise measurements. First, visual features are extracted from street-level imagery using computer vision. Second, fifteen soundscape indicators are identified and a survey is conducted to gauge them solely from images. Finally, a prediction model is constructed to infer the urban soundscape by modeling the non-linear relationship between them. The results are verified with extensive field surveys. Experiments conducted in Singapore and Shenzhen using half a million images affirm that street view imagery enables us to sense large-scale urban soundscapes with low cost but high accuracy and detail, and provides an alternative means to generate soundscape maps. reaches 0.48 by evaluating the predicted results with field data collection. Further novelties in this domain are revealing the contributing visual elements and spatial laws of soundscapes, underscoring the usability of crowdsourced data, and exposing international patterns in perception. Numéro de notice : A2023-014 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101915 Date de publication en ligne : 20/11/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101915 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102131
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101915[article]A GIS and hybrid simulation aided environmental impact assessment of city-scale demolition waste management / Zhikun Ding in Sustainable Cities and Society, vol 86 (November 2022)
[article]
Titre : A GIS and hybrid simulation aided environmental impact assessment of city-scale demolition waste management Type de document : Article/Communication Auteurs : Zhikun Ding, Auteur ; Xinping Wen, Auteur ; Xiaoyan Cao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aide à la décision
[Termes IGN] déchet
[Termes IGN] impact sur l'environnement
[Termes IGN] modèle empirique
[Termes IGN] modèle orienté agent
[Termes IGN] planification urbaine
[Termes IGN] Shenzhen
[Termes IGN] simulation dynamique
[Termes IGN] système d'information géographique
[Termes IGN] ville intelligenteRésumé : (auteur) A considerable amount of demolition waste (DW) generated by urbanization and urban renewal has brought significant threats to the environment. However, there is a serious lack of environmental impact assessment towards city-scale demolition waste management (DWM), particularly from the systematical and dynamical perspective. Traditionally the assessment has been conducted from a static perspective. The purpose of this paper is to comprehensively evaluate the environmental impact of city-scale DWM from a complex system perspective. A novel evaluation model was developed by innovatively integrating the geographic information system (GIS) and system hybrid simulation consisting of system dynamics (SD), agent-based modeling (ABM) and discrete event simulation (DES). The proposed model was verified. Based on an empirical analysis of Shenzhen, China, it is found that the environmental impact of city-scale DWM is mainly concentrated in the central and northeastern regions of Shenzhen, demonstrating spatial heterogeneity and regional aggregation. Furthermore, the results reveal that the model is robust and effective to assess environmental impact from four aspects, i.e., land occupation, water pollution, air pollution and energy consumption. The findings contribute to a better understanding of the status quo of city-scale DWM and accompanying environmental impacts, and coordinating various district governments to formulate effective DWM policies. Numéro de notice : A2022-817 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104108 Date de publication en ligne : 06/08/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101983
in Sustainable Cities and Society > vol 86 (November 2022) . - n° 104108[article]Interactive visual analytics of moving passenger flocks using massive smart card data / Tong Zhang in Cartography and Geographic Information Science, Vol 49 n° 4 (July 2022)
[article]
Titre : Interactive visual analytics of moving passenger flocks using massive smart card data Type de document : Article/Communication Auteurs : Tong Zhang, Auteur ; Wei He, Auteur ; Jing Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 354 - 369 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse spatiale
[Termes IGN] analyse visuelle
[Termes IGN] carte à puce
[Termes IGN] données massives
[Termes IGN] mobilité urbaine
[Termes IGN] objet mobile
[Termes IGN] Shenzhen
[Termes IGN] trajet (mobilité)
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Understanding urban mobility patterns is constrained by our limited capabilities to extract and visualize spatio-temporal regularities from large amounts of mobility data. Moving flocks, defined as groups of people traveling along over a pre-defined time duration, can reveal collective moving patterns at aggregated spatio-temporal scales, thereby facilitating the discovery of urban mobility structure and travel demand patterns. In this study, we extend classical trajectory-oriented flock mining algorithms to discover moving flocks of transit passengers, accounting for the constraints of multi-modal transit networks. We develop a map-centered visual analytics approach by integrating the flock mining algorithm with interactive visualization designs of discovered flocks. Novel interactive visualizations are designed and implemented to support the exploration and analyses of discovered moving flocks at different spatial and temporal scales. The visual analytics approach is evaluated using a real-world smart card dataset collected in Shenzhen City, China, validating its applicability in capturing and mapping dynamic mobility patterns over a large metropolitan area. Numéro de notice : A2022-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2022.2039775 Date de publication en ligne : 09/03/2022 En ligne : https://doi.org/10.1080/15230406.2022.2039775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100886
in Cartography and Geographic Information Science > Vol 49 n° 4 (July 2022) . - pp 354 - 369[article]Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction / Tianhong Zhao in Computers, Environment and Urban Systems, vol 94 (June 2022)
[article]
Titre : Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Zhengdong Huang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101776 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] données spatiotemporelles
[Termes IGN] gestion de trafic
[Termes IGN] graphe
[Termes IGN] logement
[Termes IGN] migration pendulaire
[Termes IGN] modèle de simulation
[Termes IGN] régression géographiquement pondérée
[Termes IGN] service public
[Termes IGN] Shenzhen
[Termes IGN] système de transport intelligent
[Termes IGN] transport public
[Termes IGN] transport urbainRésumé : (auteur) Accurate and robust short-term bus travel prediction facilitates operating the bus fleet to provide comfortable and flexible bus services. The built environment, including land use, buildings, and public facilities, has an important influence on bus travel demand prediction. However, previous studies regarded the built environment as a static feature thus even ignored its influence on bus travel in deep learning framework. To fill this gap, we propose a graph deep learning-based approach coupling with spatiotemporal influence of built environment (GDLBE) to enhance short-term bus travel demand prediction. A time-dependent geographically weighted regression method is used to resolve the dynamic influence of the built environment on bus travel demand at different times of the day. A graph deep learning module is used to capture the comprehensive spatial and temporal dependency behind massive bus travel demand. The short-term bus travel demand is predicted by fusing the dynamic built environment influences and spatiotemporal dependency. An experiment in Shenzhen is conducted to evaluate the performance of the proposed approach. Baseline methods are compared, and the results demonstrate that the proposed approach outperforms the baselines. These results will help bus fleet dispatch for smart transportation. Numéro de notice : A2022-245 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101776 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100185
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101776[article]Developing a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)PermalinkUnderstanding the modifiable areal unit problem in dockless bike sharing usage and exploring the interactive effects of built environment factors / Feng Gao in International journal of geographical information science IJGIS, vol 35 n° 9 (September 2021)PermalinkGeographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica, vol 25 n° 3 (July 2021)PermalinkPedestrian fowl prediction in open public places using graph convolutional network / Menghang Liu in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)PermalinkUsing a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide / Chaoyang Niu in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)PermalinkMonitoring the spatiotemporal dynamics of urban green space and Its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data / Yue Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)PermalinkReclaimed-airport surface-deformation monitoring by improved permanent-scatterer interferometric synthetic-aperture radar: a case study of Shenzhen Bao'an international airport, China / Lu Miao in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 2 (February 2021)PermalinkUnfolding spatial-temporal patterns of taxi trip based on an improved network kernel density estimation / Boxi Shen in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)PermalinkImpact of extreme weather events on urban human flow: A perspective from location-based service data / Zhenhua Chen in Computers, Environment and Urban Systems, vol 83 (September 2020)PermalinkMeasuring accessibility of bus system based on multi-source traffic data / Yufan Zuo in Geo-spatial Information Science, vol 23 n° 3 (September 2020)Permalink