Descripteur
Documents disponibles dans cette catégorie (37)



Etendre la recherche sur niveau(x) vers le bas
LinkClimate: An interoperable knowledge graph platform for climate data / Jiantao Wu in Computers & geosciences, vol 169 (December 2022)
![]()
[article]
Titre : LinkClimate: An interoperable knowledge graph platform for climate data Type de document : Article/Communication Auteurs : Jiantao Wu, Auteur ; Fabrizio Orlandi, Auteur ; Declan O'Sullivan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105215 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] changement climatique
[Termes IGN] données météorologiques
[Termes IGN] données multisources
[Termes IGN] historique des données
[Termes IGN] interopérabilité sémantique
[Termes IGN] National oceanic and atmospheric administration
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] réseau sémantique
[Termes IGN] site wiki
[Termes IGN] SPARQL
[Termes IGN] web sémantiqueRésumé : (auteur) Climate science has become more ambitious in recent years as global awareness about the environment has grown. To better understand climate, historical climate(e.g. archived meteorological variables such as temperature, wind, water, etc.) and climate-related data (e.g. geographical features and human activities) are widely used by today’s climate research to derive models for an explainable climate change and its effects. However, such data sources are often dispersed across a multitude of disconnected data silos on the Web. Moreover, there is a lack of advanced climate data platforms to enable multi-source heterogeneous climate data analysis, therefore, researchers must face a stern challenge in collecting and analyzing multi-source data. In this paper, we address this problem by proposing a climate knowledge graph for the integration of multiple climate data and other data sources into one service, leveraging Web technologies (e.g. HTTP) for multi-source climate data analysis. The proposed knowledge graph is primarily composed of data from the National Oceanic and Atmospheric Administration’s daily climate summaries, OpenStreetMap, and Wikidata, and it supports joint data queries on these widely used databases. This paper shows, with a use case in Ireland and the United Kingdom, how climate researchers could benefit from this platform as it allows them to easily integrate datasets from different domains and geographical locations. Numéro de notice : A2022-789 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cageo.2022.105215 Date de publication en ligne : 30/08/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105215 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101897
in Computers & geosciences > vol 169 (December 2022) . - n° 105215[article]Crowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images / Ekrem Saralioglu in Geocarto international, vol 37 n° 18 ([01/09/2022])
![]()
[article]
Titre : Crowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images Type de document : Article/Communication Auteurs : Ekrem Saralioglu, Auteur ; Oguz Gungor, Auteur Année de publication : 2022 Article en page(s) : pp 5433 - 5452 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] acquisition d'images
[Termes IGN] apprentissage profond
[Termes IGN] approche participative
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur (variable spectrale)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] étiquette
[Termes IGN] image multibande
[Termes IGN] OpenStreetMap
[Termes IGN] pixel
[Termes IGN] plateforme collaborative
[Termes IGN] texture d'image
[Termes IGN] WorldviewRésumé : (auteur) In order to solve insufficient training data problem in remote sensing, a web platform was created so that registered users can generate labeled data for various classes in a dynamic structure. Users were asked to select representative pixel groups for the forest, hazelnut, shadow, soil, tea, and building classes with the polygon tool, and then assign a class label corresponding to each created polygon thanks to the help document displaying descriptive information regarding the locations, colors, textures and distributions of the classes in the image. Crowdsourcing was again used to test the accuracy of the tagged data produced by crowdsourcing. The created data set was overlaid with the original WV-2 image, and the correctness of the labels of the polygons was once visually verified. Finally, the WV-2 image, consisting of 40 patches, was classified with CNN and an average of over 95% accuracy was achieved. Numéro de notice : A2022-702 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1917006 Date de publication en ligne : 26/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1917006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101561
in Geocarto international > vol 37 n° 18 [01/09/2022] . - pp 5433 - 5452[article]ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network / Qinjun Qiu in Transactions in GIS, vol 26 n° 3 (May 2022)
![]()
[article]
Titre : ChineseTR: A weakly supervised toponym recognition architecture based on automatic training data generator and deep neural network Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Shu Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1256 - 1279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] échantillonnage de données
[Termes IGN] OpenStreetMap
[Termes IGN] reconnaissance automatique
[Termes IGN] répertoire toponymique
[Termes IGN] site wiki
[Termes IGN] toponymeRésumé : (auteur) Toponym recognition is used to extract toponyms from natural language texts, which is a fundamental task of ubiquitous geographic information applications. Existing toponym recognition methods with state-of-the-art performance mainly leverage supervised learning (i.e., deep-learning-based approaches) with parameters learned from massive, labeled datasets that must be annotated manually. This is a great inconvenience when model training needs to fit different domain texts, especially those of social media messaging. To address this issue, this article proposes a weakly supervised Chinese toponym recognition (ChineseTR) architecture that leverages a training dataset creator that generates training datasets automatically based on word collections and associated word frequencies from various texts and an extension recognizer that employs a basic bidirectional recurrent neural network based on particular features designed for toponym recognition. The results show that the proposed ChineseTR achieves a 0.76 F1 score in a corpus with a 0.718 out-of-vocabulary rate and a 0.903 in-vocabulary rate. All comparative experiments demonstrate that ChineseTR is an effective and scalable architecture that recognizes toponyms. Numéro de notice : A2022-462 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12902 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1111/tgis.12902 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100796
in Transactions in GIS > vol 26 n° 3 (May 2022) . - pp 1256 - 1279[article]Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Retours d'expérience de la mise en place d'une plateforme collaborative pour le suivi de l'usage du sol / Ana-Maria Olteanu-Raimond in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
[article]
Titre : Retours d'expérience de la mise en place d'une plateforme collaborative pour le suivi de l'usage du sol Type de document : Article/Communication Auteurs : Ana-Maria Olteanu-Raimond , Auteur ; Marie-Dominique Van Damme
, Auteur ; Laurence Jolivet
, Auteur
Année de publication : 2022 Conférence : ICC 2021, 30th ICA international cartographic conference 14/12/2021 18/12/2021 Florence Italie Article en page(s) : pp 65 - 67 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données d'occupation du sol
[Termes IGN] changement d'utilisation du sol
[Termes IGN] données localisées des bénévoles
[Termes IGN] information géographique
[Termes IGN] plateforme collaborative
[Termes IGN] Toulouse
[Termes IGN] utilisation du solRésumé : (Auteur) [Résumé de l'intervention faite à Florence lors de la conférence de l'ACI en décembre 2021] La cartographie et le suivi de l'usage du sol (US) à une échelle spatiale et temporelle fine nécessitent beaucoup d'efforts. Des approches de détection de changement s'appuient sur la télédétection (Lu et al., 2014), cependant l'information d'usage n'est pas nécessairement en lien avec l'information de couverture du sol et elle n'est pas triviale. Un intérêt considérable s'est porté sur l'information géographique volontaire (ou volunteered geographic information) (Goodchild, 2007) comme une source de données alternative (Fonte et al., 2013) ; Fritz et al., 2015). L'objectif de cet article est de discuter des retours d'expérience suite à une initiative en information géographique volontaire pour collecter des observations sur des changements et des usages du sol ciblés (par exemple activité en carrière, usage et nombre d'étages d'un bâtiment, construction en cours), ceci afin de mettre à jour et d'enrichir des bases de données d'usage du sol institutionnelles produites par l'IGN. Numéro de notice : A2022-677 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101895
in Cartes & Géomatique > n° 247-248 (mars-juin 2022) . - pp 65 - 67[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 021-2022011 SL Revue Centre de documentation Revues en salle Disponible Mise en place d’outils collaboratifs pour une maquette BIM orientée 7D en vue de l’exploitation et de la maintenance des infrastructures de transport public / Eva Ivanova (2022)
PermalinkDeep learning for toponym resolution: Geocoding based on pairs of toponyms / Jacques Fize in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
PermalinkInteractive maps for the production of knowledge and the promotion of participation from the perspective of communication, journalism, and digital humanities / Pedro Molina Rodríguez-Navas in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkConsolidation of crowd-sourced geo-ragged data for parameterized travel recommendations / Ago Luberg (2021)
PermalinkPermalinkPermalinkPermalinkCollaborative user oriented metadata production on EuroSDR Geometadatalabs platform [paper and diaporama] / Bénédicte Bucher (2020)
![]()
PermalinkInformation Géographique Volontaire, vers un usage conjoint avec l’information géographique institutionnelle / Ana-Maria Olteanu-Raimond (2020)
PermalinkMapGenOnto: A shared ontology for map generalisation and multi-scale visualisation / Guillaume Touya (2020)
Permalink