Descripteur
Termes IGN > sciences naturelles > sciences de la vie > biologie > botanique > dendrologie > dendrométrie > diamètre à hauteur de poitrine
diamètre à hauteur de poitrineVoir aussi |
Documents disponibles dans cette catégorie (79)



Etendre la recherche sur niveau(x) vers le bas
Exploring tree growth allometry using two-date terrestrial laser scanning / Tuomas Yrttimaa in Forest ecology and management, vol 518 (15 August 2022)
![]()
[article]
Titre : Exploring tree growth allometry using two-date terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ville Luoma, Auteur ; Ninni Saarinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120303 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] houppier
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] surface terrière
[Termes IGN] volume en boisRésumé : (auteur) Tree growth is a physio-ecological phenomena of high interest among researchers across disciplines. Observing changes in tree characteristics has conventionally required either repeated measurements of the characteristics of living trees, retrospective measurements of destructively sampled trees, or modelling. The use of close-range sensing techniques such as terrestrial laser scanning (TLS) has enabled non-destructive approaches to reconstruct the three-dimensional (3D) structure of trees and tree communities in space and time. This study aims at improving the understanding of tree allometry in general and interactions between tree growth and its neighbourhood in particular by using two-date point clouds. We investigated how variation in the increments in basal area at the breast height (Δg1.3), basal area at height corresponding to 60% of tree height (Δg06h), and volume of the stem section below 50% of tree height (Δv05h) can be explained with TLS point cloud-based attributes characterizing the spatiotemporal structure of a tree crown and crown neighbourhood, entailing the competitive status of a tree. The analyses were based on 218 trees on 16 sample plots whose 3D characteristics were obtained at the beginning (2014, T1) and at the end of the monitoring period (2019, T2) from multi-scan TLS point clouds using automatic point cloud processing methods. The results of this study showed that, within certain tree communities, strong relationships (|r| > 0.8) were observed between increments in the stem dimensions and the attributes characterizing crown structure and competition. Most often, attributes characterizing the competitive status of a tree, and the crown structure at T1, were the most important attributes to explain variation in the increments of stem dimensions. Linear mixed-effect modelling showed that single attributes could explain up to 35–60% of the observed variation in Δg1.3, Δg06h and Δv05h, depending on the tree species. This tree-level evidence of the allometric relationship between stem growth and crown dynamics can further be used to justify landscape-level analyses based on airborne remote sensing technologies to monitor stem growth through the structure and development of crown structure. This study contributes to the existing knowledge by showing that laser-based close-range sensing is a feasible technology to provide 3D characterization of stem and crown structure, enabling one to quantify structural changes and the competitive status of trees for improved understanding of the underlying growth processes. Numéro de notice : A2022-484 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2022.120303 Date de publication en ligne : 22/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100899
in Forest ecology and management > vol 518 (15 August 2022) . - n° 120303[article]An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
![]()
[article]
Titre : An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images Type de document : Article/Communication Auteurs : Kwanghun Choi, Auteur ; Wontaek LIM, Auteur ; Byungwoo Chang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] gestion forestière durable
[Termes IGN] image Streetview
[Termes IGN] inventaire de la végétation
[Termes IGN] segmentation sémantique
[Termes IGN] SéoulRésumé : (auteur) Tree species and canopy structural profile (‘tree profile’) are among the most critical environmental factors in determining urban ecosystem services such as climate and air quality control from urban trees. To accurately characterize a tree profile, the tree diameter, height, crown width, and height to the lowest live branch must be all measured, which is an expensive and time-consuming procedure. Recent advances in artificial intelligence aids to efficiently and accurately measure the aforementioned tree profile parameters. This can be particularly helpful if spatially extensive and accurate street-level images provided by Google (‘streetview’) or Kakao (‘roadview’) are utilized. We focused on street trees in Seoul, the capital city of South Korea, and suggested a novel approach to create a tree profile and inventory based on deep learning algorithms. We classified urban tree species using the YOLO (You Only Look Once), one of the most popular deep learning object detection algorithms, which provides an uncomplicated method of creating datasets with custom classes. We further utilized semantic segmentation algorithm and graphical analysis to estimate tree profile parameters by determining the relative location of the interface of tree and ground surface. We evaluated the performance of the model by comparing the estimated tree heights, diameters, and locations from the model with the field measurements as ground truth. The results are promising and demonstrate the potential of the method for creating urban street tree profile inventory. In terms of tree species classification, the method showed the mean average precision (mAP) of 0.564. When we used the ideal tree images, the method also reported the normalized root mean squared error (NRMSE) for the tree height, diameter at breast height (DBH), and distances from the camera to the trees as 0.24, 0.44, and 0.41. Numéro de notice : A2022-503 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.004 Date de publication en ligne : 22/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101001
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 165 - 180[article]Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure / Alejandro Rodríguez-Vivancos in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure Type de document : Article/Communication Auteurs : Alejandro Rodríguez-Vivancos, Auteur ; José Antonio Manzanera, Auteur ; Susana Martín-Fernández, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 447 - 465 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de variance
[Termes IGN] Bootstrap (statistique)
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur d'échantillon
[Termes IGN] Espagne
[Termes IGN] forêt inéquienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] modèle de régression
[Termes IGN] modèle numérique de terrain
[Termes IGN] Pinus sylvestris
[Termes IGN] régression linéaire
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] structure-from-motionRésumé : (auteur) Airborne Laser Scanning (ALS) is widely extended in forest evaluation, although photogrammetry-based Structure from Motion (SfM) has recently emerged as a more affordable alternative. Return cloud metrics and their normalization using different typologies of Digital Terrain Models (DTM), either derived from SfM or from private or free access ALS, were evaluated. In addition, the influence of the return density (0.5–6.5 returns m-2) and the sampling intensity (0.3–3.4%) on the estimation of the most common stand structure variables were also analysed. The objective of this research is to gather all these questions in the same document, so that they serve as support for the planning of forest management. This study analyses the variables collected from 60 regularly distributed circular plots (r = 18 m) in a 150-ha of uneven-aged Scots pine stand. Results indicated that both ALS and SfM can be equally used to reduce the sampling error in the field inventories, but they showed differences when estimating the stand structure variables. ALS produced significantly better estimations than the SfM metrics for all the variables of interest, as well as the ALS-based normalization. However, the SfM point cloud produced better estimations when it was normalized with its own DTM, except for the dominant height. The return density did not have significant influence on the estimation of the stand structure variables in the range studied, while higher sampling intensities decreased the estimation errors. Nevertheless, these were stabilized at certain intensities depending on the variance of the stand structure variable. Numéro de notice : A2022-417 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s10342-022-01447-7 Date de publication en ligne : 12/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01447-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100780
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 447 - 465[article]Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system / Eric Hyyppä in Science of remote sensing, vol 5 (June 2022)
![]()
[article]
Titre : Direct and automatic measurements of stem curve and volume using a high-resolution airborne laser scanning system Type de document : Article/Communication Auteurs : Eric Hyyppä, Auteur ; Antero Kukko, Auteur ; Harri Kaartinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 100050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle numérique de terrain
[Termes IGN] Picea abies
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Today, high-quality reference tree measurements, including the position, diameter, height and volume, are cumbersome and slow to carry out, but highly needed for forest inventories based on airborne laser scanning. Mobile laser scanning technologies hold the promise for collecting reference data for forest inventories with an extremely high efficiency. Perhaps, the most efficient approach for reference data collection would be to mount a high-resolution laser scanning system on board an airborne vehicle flying at a low altitude above the forest canopy since this would allow recording reference samples of individual trees with the speed of flight. To demonstrate the potential of this technology, we mounted an in-house developed HeliALS-DW laser scanning system on board a helicopter and collected point cloud data in a boreal forest on three test sites containing a total of 1469 trees. The obtained point clouds incorporated sufficiently many high-quality stem hits for estimating the stem curves and stem volumes of individual trees since the point clouds had a relatively high point density of 2200–3800 echoes/m2, and the scanner had been tilted by 15° from the nadir to increase the possibility of recording stem hits. To automatically estimate the diameters at breast height (DBH) and stem curves of individual trees, we used algorithms designed to tolerate moderate drifts in the trajectory of the laser scanner. Furthermore, the stem volumes of individual trees were computed by using the estimated stem curves and tree heights without any allometric models. Using the proposed methods, we were able to estimate the stem curves with a root-mean-square error (RMSE) of 1.7–2.6 cm (6–9%) while detecting 42–71% of the trees. The RMSE of stem volume estimates was 0.1–0.15 m3 (12–21%). We also showed that the tree detection rate could be improved up to 87–96% for trees with a DBH exceeding 20 cm if slightly larger average errors for the stem attributes were allowed. Our results pave the way for using high-resolution airborne laser scanning for field reference data collection by conducting direct measurements of tree stems with a high efficiency. Numéro de notice : A2022-298 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.srs.2022.100050 Date de publication en ligne : 09/04/2022 En ligne : https://doi.org/10.1016/j.srs.2022.100050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100464
in Science of remote sensing > vol 5 (June 2022) . - n° 100050[article]Uncertainty of biomass stocks in Spanish forests: a comprehensive comparison of allometric equations / Aitor Ameztegui in European Journal of Forest Research, vol 141 n° 3 (June 2022)
![]()
[article]
Titre : Uncertainty of biomass stocks in Spanish forests: a comprehensive comparison of allometric equations Type de document : Article/Communication Auteurs : Aitor Ameztegui, Auteur ; Marco Rodrigues, Auteur ; Victor Granda, Auteur Année de publication : 2022 Article en page(s) : pp 395 - 407 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse forestière
[Termes IGN] changement climatique
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données allométriques
[Termes IGN] écosystème forestier
[Termes IGN] Espagne
[Termes IGN] estimation statistique
[Termes IGN] Eucalyptus (genre)
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] Pinus pinaster
[Termes IGN] puits de carbone
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Biomass and carbon content are essential indicators for monitoring forest ecosystems and their role in climate action, but their estimation is not straightforward. A typical approach to solve these limitations has been the estimation of tree or stand biomass based on forest inventory data, using either allometric equations or biomass expansion factors. Many allometric equations exist, but very few studies have assessed how the calculation methods used may impact outcomes and how this impact depends on genera, functional group, climate or forest structural attributes. In this study we evaluate the differences in biomass estimates yielded by the most widely used biomass equations in Spain. We first quantify the discrepancies at tree level and among the main forest tree species. We observed that the divergences in carbon estimations between different equations increased with tree size, especially in the case of hardwoods and for diameters beyond the range used to calibrate the equations. At the plot level, we found considerable differences between the biomass values predicted using different methods (above 25% in one out of three plots), which constitutes a warning against the uncritical choice of equations to determine biomass or carbon values. The spatial representation of the differences revealed geographical patterns related to the dominance of fast-growing species such as Eucalyptus or Pinus pinaster, with a minor effect of forest structure, and almost no effect of climate. Finally, we observed that differences were mostly due to the data source rather than the modelling approach or equation used. Based on our results, BEF equations seem a valid and unbiased option to provide nation-level estimations of carbon balance, although local equations should preferably be used if they are available for the target area. Numéro de notice : A2022-416 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1007/s10342-022-01444-w Date de publication en ligne : 09/04/2022 En ligne : https://doi.org/10.1007/s10342-022-01444-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100777
in European Journal of Forest Research > vol 141 n° 3 (June 2022) . - pp 395 - 407[article]Classification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil / Aliny Aparecida Dos Reis in Geocarto international, vol 37 n° 5 ([01/05/2022])
PermalinkEffects of climate and drought on stem diameter growth of urban tree species / Vjosa Dervishi in Forests, vol 13 n° 5 (May 2022)
PermalinkIndividual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads / Raul de Paula Pires in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
PermalinkComparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
PermalinkEstimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models / Ana de Lera Garrido in Silva fennica, vol 56 n° 2 (April 2022)
PermalinkMapping forest site quality at national level / Ana Aguirre in Forest ecology and management, vol 508 (15 March 2022)
PermalinkTwo-phase forest inventory using very-high-resolution laser scanning / Henrik J. Persson in Remote sensing of environment, vol 271 (March- 2 2022)
PermalinkAssessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation / Ville Kankare in Forests, vol 13 n° 3 (March 2022)
PermalinkEvaluation of the mixed-effects model and quantile regression approaches for predicting tree height in larch (Larix olgensis) plantations in northeastern China / Longfei Xie in Canadian Journal of Forest Research, Vol 52 n° 3 (March 2022)
PermalinkTowards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD) / Langning Huo in Remote sensing of environment, vol 270 (March 2022)
Permalink