Descripteur
Termes IGN > sciences humaines et sociales > sociologie > société de l'information > contenu généré par les utilisateurs > données issues des réseaux sociaux
données issues des réseaux sociauxSynonyme(s)tweetVoir aussi |
Documents disponibles dans cette catégorie (81)



Etendre la recherche sur niveau(x) vers le bas
Detecting spatiotemporal traffic events using geosocial media data / Shishuo Xu in Computers, Environment and Urban Systems, vol 94 (June 2022)
![]()
[article]
Titre : Detecting spatiotemporal traffic events using geosocial media data Type de document : Article/Communication Auteurs : Shishuo Xu, Auteur ; Songnian Li, Auteur ; Wei Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101797 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse de groupement
[Termes IGN] base de données d'objets mobiles
[Termes IGN] base de données spatiotemporelles
[Termes IGN] détection d'événement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] planification urbaine
[Termes IGN] sécurité routière
[Termes IGN] Toronto
[Termes IGN] trafic routier
[Termes IGN] TwitterRésumé : (auteur) Social media platforms enable efficient traffic event detection by allowing users to produce geo-tagged content (e.g., tweets) known as geosocial media data. Geosocial media data improve road safety by providing timely updates for traffic flow and traffic control. Recent studies on traffic event detection with geosocial media data have been focused around keyword-based query approaches, where the event content was inferred by predetermined categories, to retrieve relevant traffic events. Spatiotemporal features associated with traffic-related posts have not been fully investigated. In this study, we filtered irrelevant posts with association rules. A spatiotemporal clustering-based method was then used to retrieve traffic events from these filtered posts, where the content of detected events was automatically inferred with a set of representative terms. For comparison, a typical text classification-based method was also used by classifying the posts filtered from association rules into different categories. By validating the detection results with vehicle travel speed data, we demonstrate that the former outperforms the latter in terms of the number of correctly detected traffic events from one-year of Twitter data in Toronto, Canada. Our proposed approach helps organizations and governments to be aware of when and where traffic events occur by identifying event hotspots and peak periods, which improves both traffic management and urban planning. Numéro de notice : A2022-264 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101797 Date de publication en ligne : 26/03/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101797 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100261
in Computers, Environment and Urban Systems > vol 94 (June 2022) . - n° 101797[article]Detecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
![]()
[article]
Titre : Detecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach Type de document : Article/Communication Auteurs : Andreas Rienow, Auteur ; Jan Schweighöfer, Auteur ; Torben Dedring, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102732 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] anthropisation
[Termes IGN] Antilles (îles des)
[Termes IGN] carte thématique
[Termes IGN] changement d'occupation du sol
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] éclairage public
[Termes IGN] image Sentinel
[Termes IGN] image Terra-MODIS
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] tempête
[Termes IGN] utilisation du solRésumé : (auteur) Two months after the hurricanes Irma and Maria hit Barbuda, the construction of a new international airport led to accusations of degrading the Codrington Lagoon National Park and contravening the conventions of the Ramsar Program. Scientists have analyzed the aftermath with respect to historical legacies, disaster capitalism, manifestation of climate injustices and green gentrification. The main objective of this study was to quantify and allocate land use and land cover change (LULCC) in Barbuda before and after the 2017 Hurricane disasters. Remote sensing data and volunteered geographic information were analyzed to detect the potential changes in natural LULC so that human activities and the emergence of artificial surfaces could be detected. Human-induced LULCC occurred at different sites on the island, with decreased activities in Codrington, but increased and continued activities at Coco and Palmetto Points. With an accuracy of 97.1 %, we estimated a total increase of vegetated areas by 6.56 km2, and a simultaneous slight increase in roads and buildings with a total length of 249.67 km and a total area of 1.43 km2. The vegetation condition itself depict a steady decrease since 2017. New hotspots of human activity emerged on the island in the Codrington Lagoon National Park. Numéro de notice : A2022-233 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102732 Date de publication en ligne : 02/03/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102732 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100123
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102732[article]Modular multi-dimensional tool for emergency evacuation including location-based social network data / Ilil Blum Shem-Tov in Journal of location-based services, vol 16 n° 1 (March 2022)
![]()
[article]
Titre : Modular multi-dimensional tool for emergency evacuation including location-based social network data Type de document : Article/Communication Auteurs : Ilil Blum Shem-Tov, Auteur ; Shlomo Bekhor, Auteur Année de publication : 2022 Article en page(s) : pp 54 - 75 Note générale : biliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] origine - destination
[Termes IGN] réseau social géodépendant
[Termes IGN] secours d'urgence
[Termes IGN] téléphone intelligentRésumé : (auteur) This paper presents the concept of a modular multi-dimensional tool (MMDT) for evacuation planning models. The goal of MMDT is to propose alternative route and destination locations that can be evaluated and compared to one another. The proposed tool can represent a very large number of scenarios and its strength is in its modularity and efficiency. The MMDT can be applied using both conventional evacuation models and decentralised personalised evacuation models based on Location-Based Social Networks (LBSN) to reduce overall evacuation times. Large-scale test cases using anonymous LBSN data illustrate the MMDT on several scenarios. Results indicate a significant reduction in evacuation times when using decentralised personal evacuation. Numéro de notice : A2022-389 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/17489725.2021.1990422 Date de publication en ligne : 16/11/2021 En ligne : https://doi.org/10.1080/17489725.2021.1990422 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100679
in Journal of location-based services > vol 16 n° 1 (March 2022) . - pp 54 - 75[article]Novel model for predicting individuals’ movements in dynamic regions of interest / Xiaoqi Shen in GIScience and remote sensing, vol 59 n° 1 (2022)
![]()
[article]
Titre : Novel model for predicting individuals’ movements in dynamic regions of interest Type de document : Article/Communication Auteurs : Xiaoqi Shen, Auteur ; Wenzhong Shi, Auteur ; Pengfei Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 250 - 271 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] chaîne de Markov
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données spatiotemporelles
[Termes IGN] épidémie
[Termes IGN] extraction de données
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de simulation
[Termes IGN] réseau social
[Termes IGN] zone d'activité économique
[Termes IGN] zone d'intérêtRésumé : (auteur) The increasing amount of geotagged social media data provides a possible resource for location prediction. However, existing location prediction methods rarely incorporate temporal changes in mobility patterns, which could lead to unreliable predictions. In particular, human mobility patterns have changed greatly in the COVID-19 era. We propose a novel model to predict individuals’ movements in dynamic regions of interest (ROIs), taking into account changes in activity areas and movement regularity. To address changes in the activity areas, we design a new updating strategy that can ensure the realistic extraction of an individual’s ROIs. Then, we develop an integration model for changes in the movement regularity based on two newly proposed prediction methods that consider both rapid and slow changes. The proposed integration model is evaluated based on five real-world social media datasets; three Weibo datasets related to COVID-19 collected in three Chinese cities, one Twitter dataset collected in New York and one dense GPS dataset. The results demonstrate that the proposed model can achieve better performances than state-of-the-art models, especially when mobility patterns change greatly. Combined with related pandemic data, this study will benefit pandemic prevention and control. Numéro de notice : A2022-131 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15481603.2022.2026637 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15481603.2022.2026637 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99719
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 250 - 271[article]Automated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters / Gaëtan Caillaut (2022)
![]()
Titre : Automated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters Type de document : Article/Communication Auteurs : Gaëtan Caillaut, Auteur ; Cécile Gracianne, Auteur ; Nathalie Abadie , Auteur ; Guillaume Touya
, Auteur ; Samuel Auclair, Auteur
Editeur : Tarbes [France] : ISCRAM proceedings Année de publication : 2022 Conférence : ISCRAM 2022, 19th International Conference on Information Systems for Crisis Response and Management 22/05/2022 25/05/2022 Tarbes France Program Projets : RéSoCio / Auclair, Samuel Importance : 11 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] extraction automatique
[Termes IGN] géolocalisation
[Termes IGN] gestion de crise
[Termes IGN] traitement du langage naturel
[Termes IGN] TwitterRésumé : (Auteur) During natural disasters, automatic information extraction from Twitter posts is a valuable way to get a better overview of the field situation. This information has to be geolocated to support effective actions, but for the vast majority of tweets, spatial information has to be extracted from texts content. Despite the remarkable advances of the Natural Language Processing field, this task is still challenging for current state-of-the-art models because they are not necessarily trained on Twitter data and because high quality annotated data are still lacking for low resources languages. This research in progress address this gap describing an analytic pipeline able to automatically extract geolocatable entities from texts and to annotate them by aligning them with the entities present in Wikipedia/Wikidata resources. We present a new dataset for Entity Linking on French texts as preliminary results, and discuss research perspectives for enhancements over current state-of-the-art modeling for this task. Numéro de notice : C2022-005 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans Date de publication en ligne : 05/04/2022 En ligne : https://hal.archives-ouvertes.fr/hal-03631387/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100410 CIME: Context-aware geolocation of emergency-related posts / Gabriele Scalia in Geoinformatica [en ligne], vol 26 n° 1 (January 2022)
PermalinkGenerating geographical location descriptions with spatial templates: a salient toponym driven approach / Mark M. Hall in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
PermalinkAnalytics of location-based big data for smart cities: Opportunities, challenges, and future directions / Haosheng Huang in Computers, Environment and Urban Systems, vol 90 (November 2021)
PermalinkPoint-of-interest (POI) data validation methods: An urban case study / Lih Wei Yeow in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkThe geography of social media data in urban areas: Representativeness and complementarity / Alvaro Bernabeu-Bautista in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkA topic model based framework for identifying the distribution of demand for relief supplies using social media data / Ting Zhang in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkUrban land-use analysis using proximate sensing imagery: a survey / Zhinan Qiao in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkDisaster Image Classification by Fusing Multimodal Social Media Data / Zhiqiang Zou in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
PermalinkDetection of pictorial map objects with convolutional neural networks / Raimund Schnürer in Cartographic journal (the), vol 58 n° 1 (August 2021)
PermalinkPredicting user activity intensity using geographic interactions based on social media check-in data / Jing Li in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
Permalink