Descripteur
Termes IGN > géomatique > base de données localisées > couche thématique > objet géographique > objet géohistorique
objet géohistorique |
Documents disponibles dans cette catégorie (2)



Etendre la recherche sur niveau(x) vers le bas
A benchmark of named entity recognition approaches in historical documents : application to 19th century French directories / Nathalie Abadie (2022)
![]()
Titre : A benchmark of named entity recognition approaches in historical documents : application to 19th century French directories Type de document : Article/Communication Auteurs : Nathalie Abadie , Auteur ; Edwin Carlinet, Auteur ; Joseph Chazalon, Auteur ; Bertrand Duménieu
, Auteur
Editeur : Berlin, Heidelberg, Vienne, New York, ... : Springer Année de publication : 2022 Collection : Lecture notes in Computer Science, ISSN 0302-9743 num. 13237 Projets : SODUCO / Perret, Julien Conférence : DAS 2022, 5th IAPR International Workshop on Document Analysis Systems 22/05/2022 25/05/2022 La Rochelle France Proceedings Springer Importance : pp 445 - 460 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dix-neuvième siècle
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de texte
[Termes IGN] objet géohistorique
[Termes IGN] reconnaissance de noms
[Termes IGN] traitement du langage naturelRésumé : (auteur) Named entity recognition (NER) is a necessary step in many pipelines targeting historical documents. Indeed, such natural language processing techniques identify which class each text token belongs to, e.g. “person name”, “location”, “number”. Introducing a new public dataset built from 19th century French directories, we first assess how noisy modern, off-the-shelf OCR are. Then, we compare modern CNN- and Transformer-based NER techniques which can be reasonably used in the context of historical document analysis. We measure their requirements in terms of training data, the effects of OCR noise on their performance, and show how Transformer-based NER can benefit from unsupervised pre-training and supervised fine-tuning on noisy data. Results can be reproduced using resources available at https://github.com/soduco/paper-ner-bench-das22 and https://zenodo.org/record/6394464. Numéro de notice : C2022-030 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/978-3-031-06555-2_30 En ligne : http://dx.doi.org/10.1007/978-3-031-06555-2_30 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101088 Historical collaborative geocoding / Rémi Cura in ISPRS International journal of geo-information, vol 7 n° 7 (July 2018)
![]()
![]()
[article]
Titre : Historical collaborative geocoding Type de document : Article/Communication Auteurs : Rémi Cura, Auteur ; Bertrand Duménieu , Auteur ; Nathalie Abadie
, Auteur ; Benoit Costes
, Auteur ; Julien Perret
, Auteur ; Maurizio Gribaudi, Auteur
Année de publication : 2018 Projets : Belle Epoque / Riva, Angelo Article en page(s) : n° 262 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] base de données historiques
[Termes IGN] géocodage
[Termes IGN] géocodage par adresse postale
[Termes IGN] incertitude des données
[Termes IGN] interface web
[Termes IGN] jeu de données
[Termes IGN] objet géohistorique
[Termes IGN] Paris (75)
[Termes IGN] répertoire toponymique
[Termes IGN] science citoyenne
[Termes IGN] sciences humaines numériques
[Termes IGN] traitement de données localiséesRésumé : (auteur) The latest developments in the field of digital humanities have increasingly enabled the construction of large data sets which can be easily accessed and used. These data sets often contain indirect spatial information, such as historical addresses. Historical geocoding is the process of transforming indirect spatial information into direct locations which can be placed on a map, thus allowing for spatial analysis and cross-referencing. There are many geocoders that work efficiently for current addresses. However, these do not tackle temporal information, and usually follow a strict hierarchy (country, city, street, house number, etc.) which is difficult—if not impossible—to use with historical data. Historical data is filled with uncertainty (pertaining to temporal, textual, and positional accuracy, as well as to the reliability of historical sources) which can neither be ignored nor entirely resolved. Our open source, open data, and extensible solution for geocoding is based on extracting a large number of simple gazetteers composed of geohistorical objects, from historical maps. Geocoding a historical address becomes the process of finding one or several geohistorical objects in the gazetteers which best match the historical address searched by the user. The matching criteria are customisable, weighted, and include several dimensions (fuzzy string, fuzzy temporal, level of detail, positional accuracy). Since our goal is to facilitate historical work, we also put forward web-based user interfaces which help geocode (one address or batch mode) and display results over current or historical maps. Geocoded results can then be checked and edited collaboratively (no source is modified). The system was tested on the city of Paris, France, for the 19th and 20th centuries. It showed high response rates and worked quickly enough to be used interactively. Numéro de notice : A2018-389 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7070262 Date de publication en ligne : 04/07/2018 En ligne : https://doi.org/10.3390/ijgi7070262 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90804
in ISPRS International journal of geo-information > vol 7 n° 7 (July 2018) . - n° 262[article]Documents numériques
en open access
Historical collaborative geocoding - pdf éditeurAdobe Acrobat PDF