Descripteur



Etendre la recherche sur niveau(x) vers le bas
Enhanced trajectory estimation of mobile laser scanners using aerial images / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, Vol 173 (March 2021)
![]()
[article]
Titre : Enhanced trajectory estimation of mobile laser scanners using aerial images Type de document : Article/Communication Auteurs : Zille Hussnain, Auteur ; Sander J. Oude Elberink, Auteur ; M. George Vosselman, Auteur Année de publication : 2021 Article en page(s) : pp 66 - 78 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] appariement de points
[Termes descripteurs IGN] atténuation du signal
[Termes descripteurs IGN] balayage laser
[Termes descripteurs IGN] canyon urbain
[Termes descripteurs IGN] centrale inertielle
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] erreur
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] mesurage par GNSS
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] trajectoire
[Termes descripteurs IGN] trajet multipleRésumé : (auteur) Multipath effects and signal obstruction by buildings in urban canyons can lead to inaccurate GNSS measurements and therefore errors in the estimated trajectory of Mobile Laser Scanning (MLS) systems; consequently, derived point clouds are distorted and lose spatial consistency. We obtain decimetre-level trajectory accuracy making use of corresponding points between the MLS data and aerial images with accurate exterior orientations instead of using ground control points. The MLS trajectory is estimated based on observation equations resulting from these corresponding points, the original IMU observations, and soft constraints on the pitch and yaw rotations of the vehicle. We analyse the quality of the trajectory enhancement under several conditions where the experiments were designed to test the influence of the number and quality of corresponding points and to test different settings for a B-spline representation of the vehicle trajectory. The method was tested on two independently acquired MLS datasets in Rotterdam by enhancing the trajectories and evaluating them using checkpoints. The RMSE values of the original GNSS/IMU based Kalman filter results at the checkpoints were 0.26 m, 0.30 m, and 0.47 m for the X-, Y- and Z-coordinates in the first dataset and 1.10 m, 1.51 m, and 1.81 m in the second dataset. The latter dataset was recorded with a lower quality IMU in an area with taller buildings. After trajectory adjustment these RMSE values were reduced to 0.09 m, 0.11 m, and 0.16 m for the first dataset and 0.12 m, 0.14 m, and 0.18 m for the second dataset. The results confirmed that, if sufficient tie points between the point cloud and aerial imagery are available, the method supports geo-referencing of MLS point clouds in urban canyons with a near-decimetre accuracy. Numéro de notice : A2021-102 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.005 date de publication en ligne : 17/01/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.005 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96877
in ISPRS Journal of photogrammetry and remote sensing > Vol 173 (March 2021) . - pp 66 - 78[article]Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning / Maryam Pourshamsi in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning Type de document : Article/Communication Auteurs : Maryam Pourshamsi, Auteur ; Junshi Xia, Auteur ; Naoto Yokoya, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 79 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] bande L
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données polarimétriques
[Termes descripteurs IGN] forêt tropicale
[Termes descripteurs IGN] Gabon
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] Rotation Forest classification
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0–20 m), vegetation with mid-range height (20–40 m) to tall/dense ones (40–60 m); subset 2 covers mostly the dense vegetated area with height ranges 40–60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0–20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using PolSAR parameters together with a small coverage of LiDAR height as training data. Numéro de notice : A2021-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.11.008 date de publication en ligne : 19/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.11.008 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96846
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 79 - 94[article]Geomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data / Yanping Wang in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
![]()
[article]
Titre : Geomorphic analysis of Xiadian buried fault zone in Eastern Beijing plain based on SPOT image and unmanned aerial vehicle (UAV) data Type de document : Article/Communication Auteurs : Yanping Wang, Auteur ; Pinliang Dong, Auteur ; Yueqin Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 261 - 278 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] auscultation topographique
[Termes descripteurs IGN] déformation de la croute terrestre
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] effondrement de terrain
[Termes descripteurs IGN] faille géologique
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image SPOT 5
[Termes descripteurs IGN] MNS SRTM
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] Pékin (Chine)
[Termes descripteurs IGN] réseau de drainage
[Termes descripteurs IGN] zone à risqueRésumé : (auteur) This study presents geomorphic analysis of Xiadian buried fault in eastern Beijing plain (China), based on the analysis of a Satellite Pour l’Observation de la Terre (SPOT-5) image, a high-resolution digital elevation model (DEM) derived from an unmanned aerial vehicle (UAV) system, SRTM DEM and field investigation. Interpretations of the SPOT-5 image show that the pits always distribute between fault scarp segments or shallow grooves. The geomorphic features near the fault show echelon arrangements caused by dextral strike-slip activities of the fault. Based on this, the characteristics of stress field in this area have been clearly inferred. At centimeter-level accuracy, UAV-derived DEM profiles can clearly show micro tectonic landforms such as fault scarps, shallow grooves, steep slopes, and pits. Combined with previous research and field measurements, the evolution rates in length and height of the fault scarps are analysed. Furthermore, the deflection analysis of the drainage system also shows the characteristics of the continuous strike slip activity of the Xiadian fault. The study can provide valuable insight into geomorphic analysis of buried and semi-buried active faults in plain areas with increasingly frequent human activities. Numéro de notice : A2021-108 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1870168 date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.1080/19475705.2020.1870168 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96905
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 261 - 278[article]Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] photosynthèse
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images Type de document : Article/Communication Auteurs : Haibin Gu, Auteur ; Zhe Lin, Auteur ; Wenxuan Guo, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] Improved Vegetation Dryness Index
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] texture du solRésumé : (auteur) Surface soil water content (SWC) is a major determinant of crop production, and accurately retrieving SWC plays a crucial role in effective water management. Unmanned aerial systems (UAS) can acquire images with high temporal and spatial resolutions for SWC monitoring at the field scale. The objective of this study was to develop an algorithm to retrieve SWC by integrating soil texture into a vegetation index derived from UAS multispectral and thermal images. The normalized difference vegetation index (NDVI) and surface temperature (Ts) derived from the UAS multispectral and thermal images were employed to construct the temperature vegetation dryness index (TVDI) using the trapezoid model. Soil texture was incorporated into the trapezoid model based on the relationship between soil texture and the lower and upper limits of SWC to form the texture temperature vegetation dryness index (TTVDI). For validation, 128 surface soil samples, 84 in 2019 and 44 in 2020, were collected to determine soil texture and gravimetric SWC. Based on the linear regression models, the TTVDI had better performance in estimating SWC compared to the TVDI, with an increase in R2 (coefficient of determination) by 14.5% and 14.9%, and a decrease in RMSE (root mean square error) by 46.1% and 10.8%, for the 2019 and 2020 samples, respectively. The application of the TTVDI model based on high-resolution multispectral and thermal UAS images has the potential to accurately and timely retrieve SWC at the field scale. Numéro de notice : A2021-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010145 date de publication en ligne : 04/01/2021 En ligne : https://doi.org/10.3390/rs13010145 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96815
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 145[article]Structure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring / Edoardo Grottoli in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkThe Influence of camera calibration on nearshore bathymetry estimation from UAV Vvdeos / Gonzalo Simarro in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkMapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
PermalinkQuality assessment of photogrammetric methods - A workflow for reproducible UAS orthomosaics / Marvin Ludwig in Remote sensing, vol 12 n° 22 (December 2020)
PermalinkTowards online UAS‐based photogrammetric measurements for 3D metrology inspection / Fabiio Menna in Photogrammetric record, vol 35 n° 172 (December 2020)
PermalinkIs field-measured tree height as reliable as believed – Part II, A comparison study of tree height estimates from conventional field measurement and low-cost close-range remote sensing in a deciduous forest / Luka Jurjević in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
PermalinkRiver ice segmentation with deep learning / Abhineet Singh in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkAssessing the effects of thinning on stem growth allocation of individual Scots pine trees / Ninni Saarinen in Forest ecology and management, vol 474 ([15/10/2020])
PermalinkHierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
Permalink