Descripteur
Documents disponibles dans cette catégorie (84)



Etendre la recherche sur niveau(x) vers le bas
Drought impacts in forest canopy and deciduous tree saplings in Central European forests / Mirela Beloiu in Forest ecology and management, vol 509 (1 April 2022)
![]()
[article]
Titre : Drought impacts in forest canopy and deciduous tree saplings in Central European forests Type de document : Article/Communication Auteurs : Mirela Beloiu, Auteur ; Reinhold Stahlmann, Auteur ; Carl Beierkuhnlein, Auteur Année de publication : 2022 Article en page(s) : n° 120075 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Bavière (Allemagne)
[Termes IGN] bois mort
[Termes IGN] canopée
[Termes IGN] dendrométrie
[Termes IGN] données de terrain
[Termes IGN] écosystème forestier
[Termes IGN] jeune arbre
[Termes IGN] mortalité
[Termes IGN] peuplement mélangé
[Termes IGN] phénomène climatique extrême
[Termes IGN] Pinophyta
[Termes IGN] régénération (sylviculture)
[Termes IGN] résilience écologique
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forests worldwide are increasingly exposed to extreme weather events. Drought deteriorates the health, structure, and functioning of forests, which can lead to reduced diversity, decreased productivity, and increased tree mortality. Therefore, it is an urgent need to assess the impact of drought on tree species. Due to differences in tree physiology, saplings and mature trees are likely to respond specifically to drought conditions. In contrast to mature trees, little is known about the response of saplings to drought. Here, we combine in-situ field measurements for saplings of deciduous tree species with remote sensing for forest canopy to assess drought damage, recovery, and sapling mortality patterns during a centennial drought (2018, 2019) and beyond (2020). We measured 2051 saplings out of 214 plots in Central Germany. Forest canopy health was assessed using 10 × 10 m resolution satellite observations for the same locations. We (1) demonstrate that forest canopy exhibits long-lasting drought-induced effects, (2) show that saplings have a remarkable capacity to recover from drought and survive a subsequent drought, (3) demonstrate that reduced sapling recovery leads to their mortality, (4) reveal that drought damage on saplings increases from pioneer to non-pioneer species, and mortality is ranking from Sorbus aucuparia > Sambucus nigra > Fraxinus excelsior, Acer campestre, Frangula alnus > Ulmus glabra > Carpinus betulus > Betula pendula, Fagus sylvatica > Acer pseudoplatanus > Quercus petraea > Corylus avellana, Crataegus spp., > Prunus avium, Quercus robur; and (5) link drought response to site conditions, indicating that species diversity and winter precipitation as relevant indicators of tree health. If periods of drought become more frequent, as expected, this could negatively impact mid-term forest recovery, alter long-term tree species assemblages and reduce biodiversity and functional resilience of forest ecosystems. We suggest that models of forest response to drought should differentiate between the forest canopy and understory and also consider species-specific responses as we found a broad spectrum of responses within the same plant functional type of deciduous tree species in terms of drought damage and recovery. Numéro de notice : A2022-191 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120075 Date de publication en ligne : 12/02/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120075 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99947
in Forest ecology and management > vol 509 (1 April 2022) . - n° 120075[article]Competition and climate influence in the basal area increment models for Mediterranean mixed forests / Diego Rodríguez de Prado in Forest ecology and management, vol 506 (15 February 2022)
![]()
[article]
Titre : Competition and climate influence in the basal area increment models for Mediterranean mixed forests Type de document : Article/Communication Auteurs : Diego Rodríguez de Prado, Auteur ; José Riofrio, Auteur ; Jorge Aldea, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 119955 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] climat aride
[Termes IGN] climat méditerranéen
[Termes IGN] croissance des arbres
[Termes IGN] Espagne
[Termes IGN] forêt méditerranéenne
[Termes IGN] gestion forestière durable
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modélisation de la forêt
[Termes IGN] peuplement mélangé
[Termes IGN] surface terrière
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Competition plays a key role controlling tree growth in mixed forests. Contrary to monocultures, quantifying species mixing influence on tree growth suppose a challenge since the presence of two or more species requires to estimate the degree of intra- and inter-specific competition among trees. Moreover, it is well known that aridity can also influence tree growth, especially in the Mediterranean Basin. In the present context of climate change, it is essential to take into account species mixing and aridity uncertainty in the design of sustainable management guidelines for Mediterranean mixed forests. To achieve that, data from Spanish National Forest Inventory was used in this study to fit new mixed-effects basal area increment (BAI) models for 29 two-species compositions in Spain. A wide range of different competition structures (intra-specific, inter-specific, size-symmetric and size-asymmetric) and aridity conditions (in terms of the De Martonne Index) were included and tested into the BAI models. Parameter estimations were obtained for all possible species, mixtures and combinations by Maximum Likelihood (ML). Models with all the coefficients being significant (p Numéro de notice : A2022-059 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2021.119955 Date de publication en ligne : 28/12/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119955 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99470
in Forest ecology and management > vol 506 (15 February 2022) . - n° 119955[article]Multi-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests / Chong Zhang in Remote sensing, vol 14 n° 4 (February-2 2022)
![]()
[article]
Titre : Multi-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests Type de document : Article/Communication Auteurs : Chong Zhang, Auteur ; Jiawei Zhou, Auteur ; Huiwen Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 874 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] échantillonnage de données
[Termes IGN] entropie
[Termes IGN] estimation quantitative
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] peuplement mélangé
[Termes IGN] Pinophyta
[Termes IGN] segmentation d'imageRésumé : (auteur) High-resolution UAV imagery paired with a convolutional neural network approach offers significant advantages in accurately measuring forestry ecosystems. Despite numerous studies existing for individual tree crown delineation, species classification, and quantity detection, the comprehensive situation in performing the above tasks simultaneously has rarely been explored, especially in mixed forests. In this study, we propose a new method for individual tree segmentation and identification based on the improved Mask R-CNN. For the optimized network, the fusion type in the feature pyramid network is modified from down-top to top-down to shorten the feature acquisition path among the different levels. Meanwhile, a boundary-weighted loss module is introduced to the cross-entropy loss function Lmask to refine the target loss. All geometric parameters (contour, the center of gravity and area) associated with canopies ultimately are extracted from the mask by a boundary segmentation algorithm. The results showed that F1-score and mAP for coniferous species were higher than 90%, and that of broadleaf species were located between 75%–85.44%. The producer’s accuracy of coniferous forests was distributed between 0.8–0.95 and that of broadleaf ranged in 0.87–0.93; user’s accuracy of coniferous was distributed between 0.81–0.84 and that of broadleaf ranged in 0.71–0.76. The total number of trees predicted was 50,041 for the entire study area, with an overall error of 5.11%. The method under study is compared with other networks including U-net and YOLOv3. Results in this study show that the improved Mask R-CNN has more advantages in broadleaf canopy segmentation and number detection. Numéro de notice : A2022-168 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14040874 Date de publication en ligne : 11/02/2022 En ligne : https://doi.org/10.3390/rs14040874 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99793
in Remote sensing > vol 14 n° 4 (February-2 2022) . - n° 874[article]Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest / Ran Meng in Remote sensing of environment, vol 269 (February 2022)
![]()
[article]
Titre : Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest Type de document : Article/Communication Auteurs : Ran Meng, Auteur ; Renjie Gao, Auteur ; Feng Zhao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112847 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatiale
[Termes IGN] dépérissement
[Termes IGN] forêt tempérée
[Termes IGN] image Landsat-8
[Termes IGN] insecte nuisible
[Termes IGN] mortalité
[Termes IGN] peuplement mélangé
[Termes IGN] Scolytinae
[Termes IGN] signature spectrale
[Termes IGN] surveillance forestière
[Termes IGN] xylophageRésumé : (auteur) The recent northward expansion of Southern Pine Beetle (SPB) outbreaks associated with warming winters has caused extensive tree mortality in temperate pine forests, significantly affecting forest dynamics, structure, and functioning. Spatially-explicit early warning and detection of SPB-induced tree mortality is critical for timely and sustainable forest management practices. The unique contributions of remote sensing technologies to mapping the location, extent, and severity of beetle outbreaks, as well as assisting in analyzing the potential drivers for outbreak predictions, have been well recognized. However, little is known about the performance of moderate resolution satellite multispectral imagery for early warning and detection of SPB-induced tree mortality. Thus, we conducted this study, as the first attempt, to capture the spatial-temporal patterns of SPB infestation severity at the regional scale and to understand the underlying environmental drivers in a spatially-explicit manner. First, we explored the spectral signatures of SPB-killed trees based on 30-m plot measurements and Landsat-8 imagery. Then, to improve detection accuracy for areas with low-moderate SPB infestation severity, we added spectral-temporal anomaly information in the form of a linear trend of the spectral index trajectory to a previously developed approach. The best overall accuracy increased from 84.7% to 90.1% and the best Macro F1 value increased from 0.832 to 0.900. Next, we compared the performances of spectral indices in mapping SPB infestation severity (i.e., % red stage within the 30-m grid cell). The results showed that the combination of Normalized Difference Moisture Index and Tasseled Cap Greenness had the best performance for mapping SPB infestation severity (2016: R2 = 0.754; RSME = 15.7; 2017: R2 = 0.787; RSME = 12.4). Finally, we found that climatic and landscape variables can explain the detected patterns of SPB infestation from 2014 to 2017 in our study area (R2 = 0.751; RSME = 9.67), providing valuable insights on possible predictors for early warning of SPB infestation. Specifically, in our study area, winter dew point temperature was found to be one of the most important predictors, followed by SPB infestation locations in the previous year, canopy cover of host species, elevation, and slope. In the context of continued global warming, our study not only provides a novel framework for efficient, spatially-explicit, and quantitative measurements of forest damage induced by SPB infestation over large scales, but also uncovers opportunities to predict future SPB outbreaks and take precautions against it. Numéro de notice : A2022-096 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112847 Date de publication en ligne : 15/12/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112847 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99538
in Remote sensing of environment > vol 269 (February 2022) . - n° 112847[article]Forest floor alteration by canopy trees and soil wetness drive regeneration of a spruce-beech forest / Pavel Daněk in Forest ecology and management, vol 504 (15 January 2022)
![]()
[article]
Titre : Forest floor alteration by canopy trees and soil wetness drive regeneration of a spruce-beech forest Type de document : Article/Communication Auteurs : Pavel Daněk, Auteur ; Pavel Šamonil, Auteur ; Libor Hort, Auteur Année de publication : 2022 Article en page(s) : n° 119802 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] bois mort
[Termes IGN] canopée
[Termes IGN] Fagus sylvatica
[Termes IGN] humidité du sol
[Termes IGN] litière
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] régénération (sylviculture)
[Termes IGN] République Tchèque
[Termes IGN] semis (sylviculture)
[Termes IGN] sol forestier
[Vedettes matières IGN] ForesterieRésumé : (auteur) Natural regeneration of European beech (Fagus sylvatica) and Norway spruce (Picea abies) plays a crucial role in the future of many European mountain forests. It is affected by various soil and stand-related factors whose relative importance, especially in mixed stands, is still not known. In this study, we assessed the importance of stand composition, soil wetness, disturbances and different microsites and seedbeds for regeneration of beech and spruce in a mixed old-growth mountain forest. We also focused on how the effects of these factors change as regeneration gets older. We sampled all regeneration in 563 plots from different microsite types (deadwood, intact soil, treethrow pits and mounds), distinguishing three seedbeds (mosses, beech litter, bare substrate) for seedlings. We used soil survey and tree census data with generalized linear mixed models and variance partitioning to identify the main factors driving tree regeneration and their relative importance. Although beech was slightly less abundant in the canopy than spruce, it strongly outnumbered spruce in regeneration. Beech regeneration showed an affinity for beech litter-rich microsites and drier soils, while spruce was more common on deadwood and moister soils and its response to the seedbed was microsite-specific. The regeneration of both species was positively related to the proportion of their own species in the canopy, but more so in seedlings than in older regeneration cohorts, where soil wetness was more important. The overall pattern of tree regeneration thus resulted from a complex interplay between site conditions and their alterations by current and former generations of canopy trees through the creation of new microsites (deadwood, uprooting mounds) or litter production. Where beech regeneration is not suppressed by excess soil wetness, it is much more successful than spruce due to its shade tolerance and ability to be established in the beech litter that dominates the forest floor. On the other hand, spruce regeneration is mostly restricted to elevated microsites with lower litter accumulation, such as deadwood and treethrow mounds. Our results indicate that both species exhibit an ability to modify their environment in favor of their own regeneration, but under current conditions, beech is more successful than spruce and can be expected to increase its dominance in the future. Numéro de notice : A2022-022 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2021.119802 Date de publication en ligne : 04/11/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119802 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99214
in Forest ecology and management > vol 504 (15 January 2022) . - n° 119802[article]Radiative transfer modeling in structurally complex stands: towards a better understanding of parametrization / Frédéric André in Annals of Forest Science [en ligne], vol 78 n° 4 (December 2021)
PermalinkEarly detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery / Run Yu in Forest ecology and management, vol 497 (1 October 2021)
PermalinkDetection of aspen in conifer-dominated boreal forests with seasonal multispectral drone image point clouds / Alwin A. Hardenbol in Silva fennica, vol 55 n° 4 (September 2021)
PermalinkCalibration of the process-based model 3-PG for major central European tree species / David I. Forrester in European Journal of Forest Research, vol 140 n° 4 (August 2021)
PermalinkThe presence of shade-intolerant conifers facilitates the regeneration of Quercus petraea in mixed stands / Jeremy Borderieux in Forest ecology and management, vol 491 (1July 2021)
PermalinkUnmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (Case study: Hyrcanian mixed forest) / Vahid Nasiri in Canadian Journal of Forest Research, Vol 51 n° 7 (July 2021)
PermalinkCharacterization of mixed and monospecific stands of Scots pine and Maritime pine: soil profile, physiography, climate and vegetation cover data / Daphne Lopez-Marcos in Annals of Forest Science [en ligne], vol 78 n° 2 (June 2021)
PermalinkIndividual tree identification using a new cluster-based approach with discrete-return airborne LiDAR data / Haijian Liu in Remote sensing of environment, vol 258 (June 2021)
PermalinkMixture effect on radial stem and shoot growth differs and varies with temperature / Maude Toïgo in Forest ecology and management, vol 488 (15 May 2021)
PermalinkSelf-thinning tree mortality models that account for vertical stand structure, species mixing and climate / David I. Forrester in Forest ecology and management, Vol 487 ([01/05/2021])
Permalink