Descripteur
Termes descripteurs IGN > informatique > intelligence artificielle > base d'apprentissage
base d'apprentissage |



Etendre la recherche sur niveau(x) vers le bas
Learning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Learning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery Type de document : Article/Communication Auteurs : Ju Zhang, Auteur ; Qingwu Hu, Auteur ; Jiayuan Li, Auteur ; Mingyao Ai, Auteur Année de publication : 2021 Article en page(s) : pp 1836 - 1847 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] rastérisation
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] trace GPS
[Termes descripteurs IGN] trace numérique
[Termes descripteurs IGN] trajectoire
[Termes descripteurs IGN] Wuhan (Chine)
[Termes descripteurs IGN] zone urbaineRésumé : (Auteur) Deep learning has achieved great success in recent years, among which the convolutional neural network (CNN) method is outstanding in image segmentation and image recognition. It is also widely used in satellite imagery road extraction and, generally, can obtain accurate and extraction results. However, at present, the extraction of roads based on CNN still requires a lot of manual preparation work, and a large number of samples can be marked to achieve extraction, which has to take long drawing cycle and high production cost. In this article, a new CNN sample set production method is proposed, which uses the GPS trajectories of floating car as training set (GPSTasST), for the multilevel urban roads extraction from high-resolution remote sensing imagery. This method rasterizes the GPS trajectories of floating car into a raster map and uses the processed raster map to label the satellite image to obtain a road extraction sample set. CNN can extract roads from remote sensing imagery by learning the training set. The results show that the method achieves a harmonic mean of precision and recall higher than road extraction method from single data source while eliminating the manual labeling work, which shows the effectiveness of this work. Numéro de notice : A2021-211 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3003425 date de publication en ligne : 14/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3003425 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97196
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 1836 - 1847[article]Forêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification / Aurélien N.G. Matsaguim in Revue Française de Photogrammétrie et de Télédétection, n° 222 (novembre 2020)
![]()
[article]
Titre : Forêt d'arbres aléatoires et classification d'images satellites : relation entre la précision du modèle d'entraînement et la précision globale de la classification Type de document : Article/Communication Auteurs : Aurélien N.G. Matsaguim, Auteur ; Emmanuel D. Tiomo, Auteur Année de publication : 2020 Article en page(s) : pp 3 - 14 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] arbre de décision
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] Cameroun
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] corrélation d'images
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] qualité d'imageRésumé : (Auteur) En télédétection, il existe un grand nombre d'algorithmes permettant de classifier une image satellite. Parmi ces algorithmes de classification, la Forêt d'Arbres Aléatoires apparait comme particulièrement performant. Cette étude a pour objectifs d'évaluer (1) l'importance de la sélection des images pour le niveau de précision du modèle d'entrainement et (2) la nature de la relation qui existe entre le niveau de précision du modèle et celui de la précision globale de la carte thématique résultant de la classification de l'image satellite avec cet algorithme de classification. A partir d'une image Landsat 8 OLI prise au-dessus d'une zone de montagne tropicale : la région de l'Ouest Cameroun, 35 modèles ont été construits et testés. Les résultats montrent que le niveau de la précision globale des résultats de la Forêts d'Arbres Aléatoires est étroitement dépendant d'une part de la précision du modèle d'entrainement utilisé pour classifier l'image satellite, et d'autre part du choix des images utilisées pour entrainer ce modèle. De plus, la sélection de ces images est elle-même dépendante de la qualité des zones d'entrainement qui servirontà la construction du modèle. Il est donc important de mettre en accent particulier sur la qualité des données d'entrée afin de garantir des résultats satisfaisants avec cet algorithme. Mots clés : Forêt d’Arbres Aléatoires ; précision ; modèle d’entrainement ; télédétection ; Cameroun Numéro de notice : A2020-760 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans date de publication en ligne : 25/11/2020 En ligne : http://www.sfpt.fr/rfpt/index.php/RFPT/article/view/477/251 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96400
in Revue Française de Photogrammétrie et de Télédétection > n° 222 (novembre 2020) . - pp 3 - 14[article]Deep learning for enrichment of vector spatial databases: Application to highway interchange / Guillaume Touya in ACM Transactions on spatial algorithms and systems, vol 6 n° 3 (May 2020)
![]()
![]()
[article]
Titre : Deep learning for enrichment of vector spatial databases: Application to highway interchange Type de document : Article/Communication Auteurs : Guillaume Touya , Auteur ; Imran Lokhat
, Auteur
Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] base de données vectorielles
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] échangeur routier
[Termes descripteurs IGN] enrichissement sémantique
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] segmentation d'imageRésumé : (auteur) Spatial analysis and pattern recognition with vector spatial data is particularly useful to enrich raw data. In road networks, for instance, there are many patterns and structures that are implicit with only road line features, among which highway interchange appeared very complex to recognize with vector-based techniques. The goal is to find the roads that belong to an interchange, such as the slip roads and the highway roads connected to the slip roads. To go further than state-of-the-art vector-based techniques, this article proposes to use raster-based deep learning techniques to recognize highway interchanges. The contribution of this work is to study how to optimally convert vector data into small images suitable for state-of-the-art deep learning models. Image classification with a convolutional neural network (i.e., is there an interchange in this image or not?) and image segmentation with a u-net (i.e., find the pixels that cover the interchange) are experimented and give better results than existing vector-based techniques in this specific use case (99.5% against 74%). Numéro de notice : A2020-365 Affiliation des auteurs : LaSTIG COGIT (2012-2019) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1145/3382080 date de publication en ligne : 01/04/2020 En ligne : https://doi.org/10.1145/3382080 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95399
in ACM Transactions on spatial algorithms and systems > vol 6 n° 3 (May 2020) . - 21 p.[article]Documents numériques
peut être téléchargé
Deep learning for enrichment of vector spatial databases ... - preprintAdobe Acrobat PDFLearning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery / Lichao Mou in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
![]()
[article]
Titre : Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery Type de document : Article/Communication Auteurs : Lichao Mou, Auteur ; Lorenzo Bruzzone, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2019 Article en page(s) : pp 924 - 935 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] réseau neuronal récurrentRésumé : (Auteur) Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network and a recurrent neural network into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependence in bitemporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) it is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; and 3) it is capable of adaptively learning the temporal dependence between multitemporal images, unlike most of the algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analyses of the experimental results demonstrate competitive performance in the proposed mode. Numéro de notice : A2019-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2863224 date de publication en ligne : 20/11/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2863224 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92449
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 924 - 935[article]
Titre : Filtering mislabeled data for improving time series classification Type de document : Article/Communication Auteurs : Charlotte Pelletier, Auteur ; Silvia Valero, Auteur ; Jordi Inglada, Auteur ; Gérard Dedieu, Auteur ; Nicolas Champion , Auteur
Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2017 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : Multitemp 2017, 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images 27/06/2017 29/06/2017 Brugge Belgique Proceedings IEEE Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] base d'apprentissage
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] végétationRésumé : (auteur) The supervised classification of optical image time series allow the production of accurate land cover maps over large areas. However, the precision yielded by learning algorithms strongly depends on the quality of the reference data. The reference databases covering a large geographical area usually contain noisy data with an important number of mislabeled instances. These labeling errors result in longer training time, less accurate classifiers, and ultimately poorer results. To address this issue, we proposed a new iterative learning framework that removes mislabeled data from the training set. Specifically, a preliminary outlier rejection procedure based on the well-known Random Forest algorithm is proposed. The presented strategy is tested with the classification of Sentinel-2 image time series acquired on 2016 by using an out-of-date reference dataset collected on 2014. Numéro de notice : C2017-059 Affiliation des auteurs : LaSTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/Multi-Temp.2017.8035217 date de publication en ligne : 14/09/2017 En ligne : https://doi.org/10.1109/Multi-Temp.2017.8035217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97497 Forêts aléatoires pour la détection des feux tricolores à partir de profils de vitesse GPS / Yann Méneroux (2016)
Permalink