Descripteur



Etendre la recherche sur niveau(x) vers le bas
Mapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
![]()
[article]
Titre : Mapping urban fingerprints of odonyms automatically extracted from French novels Type de document : Article/Communication Auteurs : Ludovic Moncla, Auteur ; Mauro Gaio, Auteur ; Thierry Joliveau, Auteur ; Yves-François Le Lay, Auteur ; Pierre-Olivier Mazagol, Auteur Année de publication : 2019 Article en page(s) : pp 2477 - 2497 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes descripteurs IGN] dix-neuvième siècle
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] Geoparsing
[Termes descripteurs IGN] langage naturel (informatique)
[Termes descripteurs IGN] littérature
[Termes descripteurs IGN] odonymie
[Termes descripteurs IGN] Paris (75)
[Termes descripteurs IGN] reconnaissance de noms
[Termes descripteurs IGN] route
[Termes descripteurs IGN] traitement du langage naturelRésumé : (auteur) In this paper, we propose and discuss a methodology to map the spatial fingerprints of novels and authors based on all of the named urban roads (i.e., odonyms) extracted from novels. We present several ways to explore Parisian space and fictional landscapes by interactively and simultaneously browsing geographical space and literary text. Our project involves building a platform capable of retrieving, mapping and analyzing the occurrences of named urban roads in novels in which the action occurs wholly or partly in Paris. This platform will be used in several areas, such as cultural tourism, urban research, and literary analysis. The paper focuses on extracting named urban roads and mapping the results for a sample of 31 novels published between 1800 and 1914. Two approaches to the annotation of odonyms are compared. First, we describe a proof of concept using queries made via the TXM textual analysis platform. Then, we describe an automatic process using a natural language processing (NLP) method. Additionally, we mention how the geosemantic information annotated from the text (e.g., a structure combining verbs, spatial relations, named entities, adjectives and adverbs) can be used to automatically characterize the semantic content associated with named urban roads. Numéro de notice : A2019-427 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1584804 date de publication en ligne : 17/03/2019 En ligne : https://doi.org/10.1080/13658816.2019.1584804 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93560
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2477 - 2497[article]TAGGS : grouping tweets to improve global geoparsing for disaster response / Jens A. de Bruijn in Journal of Geovisualization and Spatial Analysis, vol 2 n° 1 (June 2018)
![]()
[article]
Titre : TAGGS : grouping tweets to improve global geoparsing for disaster response Type de document : Article/Communication Auteurs : Jens A. de Bruijn, Auteur ; Hans de Moel, Auteur ; Brenden Jongman, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Linguistique
[Termes descripteurs IGN] catastrophe naturelle
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] Geoparsing
[Termes descripteurs IGN] inondation
[Termes descripteurs IGN] prise en compte du contexte
[Termes descripteurs IGN] risque naturel
[Termes descripteurs IGN] TwitterRésumé : (Auteur) Timely and accurate information about ongoing events are crucial for relief organizations seeking to effectively respond to disasters. Recently, social media platforms, especially Twitter, have gained traction as a novel source of information on disaster events. Unfortunately, geographical information is rarely attached to tweets, which hinders the use of Twitter for geographical applications. As a solution, geoparsing algorithms extract and can locate geographical locations referenced in a tweet’s text. This paper describes TAGGS, a new algorithm that enhances location disambiguation by employing both metadata and the contextual spatial information of groups of tweets referencing the same location regarding a specific disaster type. Validation demonstrated that TAGGS approximately attains a recall of 0.82 and precision of 0.91. Without lowering precision, this roughly doubles the number of correctly found administrative subdivisions and cities, towns, and villages as compared to individual geoparsing. We applied TAGGS to 55.1 million flood-related tweets in 12 languages, collected over 3 years. We found 19.2 million tweets mentioning one or more flood locations, which can be towns (11.2 million), administrative subdivisions (5.1 million), or countries (4.6 million). In the future, TAGGS could form the basis for a global event detection system. Numéro de notice : A2018-588 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-017-0010-6 date de publication en ligne : 26/12/2017 En ligne : https://doi.org/10.1007/s41651-017-0010-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92505
in Journal of Geovisualization and Spatial Analysis > vol 2 n° 1 (June 2018)[article]