Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > données d'entrainement (apprentissage automatique)
données d'entrainement (apprentissage automatique)Synonyme(s)base d'apprentissageVoir aussi |
Documents disponibles dans cette catégorie (61)



Etendre la recherche sur niveau(x) vers le bas
Improving remote sensing classification: A deep-learning-assisted model / Tsimur Davydzenka in Computers & geosciences, vol 164 (July 2022)
![]()
[article]
Titre : Improving remote sensing classification: A deep-learning-assisted model Type de document : Article/Communication Auteurs : Tsimur Davydzenka, Auteur ; Pejman Tahmasebi, Auteur ; Mark Carroll, Auteur Année de publication : 2022 Article en page(s) : n° 105123 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image à haute résolution
[Termes IGN] modèle stochastique
[Termes IGN] précision de la classificationRésumé : (auteur) In many industries and applications, obtaining and classifying remote sensing imagery plays a crucial role. The accuracy of classification, in particular the machine learning methods, mainly depends on a multitude of factors, among which one of the most important ones is the amount of training data. Obtaining sufficient amounts of training data, however, can be very difficult or costly, and one must find alternative ways to improve the accuracy of predictions. To this end, a possible solution that we provide in this study is to use a stochastic method for producing variations of the training images that will retain the important class-wide features and thereby enrich the machine learning's “understanding” of the variabilities. As such, we applied a stochastic algorithm to produce additional realizations of the limited input imagery and thereby significantly increase the final overall accuracy in a deep learning method. We found that by enlarging the initial training set by additional realizations, we are able to consistently improve classification accuracy, compared with generic image augmentation approaches. The results of this study show that there is a great opportunity to increase the accuracy of predictions when enough data are not available. Numéro de notice : A2022-388 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2022.105123 Date de publication en ligne : 29/04/2022 En ligne : https://doi.org/10.1016/j.cageo.2022.105123 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100672
in Computers & geosciences > vol 164 (July 2022) . - n° 105123[article]Constraint-based evaluation of map images generalized by deep learning / Azelle Courtial in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
![]()
[article]
Titre : Constraint-based evaluation of map images generalized by deep learning Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Année de publication : 2022 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : n° 13 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] connexité (graphes)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] montagne
[Termes IGN] programmation par contraintes
[Termes IGN] qualité des données
[Termes IGN] rendu réaliste
[Termes IGN] route
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Deep learning techniques have recently been experimented for map generalization. Although promising, these experiments raise new problems regarding the evaluation of the output images. Traditional map generalization evaluation cannot directly be applied to the results in a raster format. Additionally, the internal evaluation used by deep learning models is mostly based on the realism of images and the accuracy of pixels, and none of these criteria is sufficient to evaluate a generalization process. Finally, deep learning processes tend to hide the causal mechanisms and do not always guarantee a result that follows cartographic principles. In this article, we propose a method to adapt constraint-based evaluation to the images generated by deep learning models. We focus on the use case of mountain road generalization, and detail seven raster-based constraints, namely, clutter, coalescence reduction, smoothness, position preservation, road connectivity preservation, noise absence, and color realism constraints. These constraints can contribute to current studies on deep learning-based map generalization, as they can help guide the learning process, compare different models, validate these models, and identify remaining problems in the output images. They can also be used to assess the quality of training examples. Numéro de notice : A2022-332 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s41651-022-00104-2 Date de publication en ligne : 07/05/2022 En ligne : http://dx.doi.org/10.1007/s41651-022-00104-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100646
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022) . - n° 13[article]Weakly supervised semantic segmentation of airborne laser scanning point clouds / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 187 (May 2022)
![]()
[article]
Titre : Weakly supervised semantic segmentation of airborne laser scanning point clouds Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; M. George Vosselman, Auteur ; Michael Ying Yang, Auteur Année de publication : 2022 Article en page(s) : pp 79 - 100 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] chevauchement
[Termes IGN] classification dirigée
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] hétérogénéité sémantique
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) While modern deep learning algorithms for semantic segmentation of airborne laser scanning (ALS) point clouds have achieved considerable success, the training process often requires a large number of labelled 3D points. Pointwise annotation of 3D point clouds, especially for large scale ALS datasets, is extremely time-consuming work. Weak supervision that only needs a few annotation efforts but can make networks achieve comparable performance is an alternative solution. Assigning a weak label to a subcloud, a group of points, is an efficient annotation strategy. With the supervision of subcloud labels, we first train a classification network that produces pseudo labels for the training data. Then the pseudo labels are taken as the input of a segmentation network which gives the final predictions on the testing data. As the quality of pseudo labels determines the performance of the segmentation network on testing data, we propose an overlap region loss and an elevation attention unit for the classification network to obtain more accurate pseudo labels. The overlap region loss that considers the nearby subcloud semantic information is introduced to enhance the awareness of the semantic heterogeneity within a subcloud. The elevation attention helps the classification network to encode more representative features for ALS point clouds. For the segmentation network, in order to effectively learn representative features from inaccurate pseudo labels, we adopt a supervised contrastive loss that uncovers the underlying correlations of class-specific features. Extensive experiments on three ALS datasets demonstrate the superior performance of our model to the baseline method (Wei et al., 2020). With the same amount of labelling efforts, for the ISPRS benchmark dataset, the Rotterdam dataset and the DFC2019 dataset, our method rises the overall accuracy by 0.062, 0.112 and 0.031, and the average F1 score by 0.09, 0.178 and 0.043 respectively. Our code is publicly available at ‘https://github.com/yaping222/Weak_ALS.git’. Numéro de notice : A2022-227 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.03.001 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.03.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100197
in ISPRS Journal of photogrammetry and remote sensing > vol 187 (May 2022) . - pp 79 - 100[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022051 SL Revue Centre de documentation Revues en salle Disponible 081-2022053 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
![]()
[article]
Titre : Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data Type de document : Article/Communication Auteurs : Michele Dalponte, Auteur ; Alvar J. I. Kallio, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dépérissement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] Norvège
[Termes IGN] Perceptron multicouche
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] régression logistique
[Termes IGN] santé des forêts
[Termes IGN] semis de pointsRésumé : (auteur) Wood decay caused by pathogenic fungi in Norway spruce forests causes severe economic losses in the forestry sector, and currently no efficient methods exist to detect infected trees. The detection of wood decay could potentially lead to improvements in forest management and could help in reducing economic losses. In this study, airborne hyperspectral data were used to detect the presence of wood decay in the trees in two forest areas located in Etnedal (dataset I) and Gran (dataset II) municipalities, in southern Norway. The hyperspectral data used consisted of images acquired by two sensors operating in the VNIR and SWIR parts of the spectrum. Corresponding ground reference data were collected in Etnedal using a cut-to-length harvester while in Gran, field measurements were collected manually. Airborne laser scanning (ALS) data were used to detect the individual tree crowns (ITCs) in both sites. Different approaches to deal with pixels inside each ITC were considered: in particular, pixels were either aggregated to a unique value per ITC (i.e., mean, weighted mean, median, centermost pixel) or analyzed in an unaggregated way. Multiple classification methods were explored to predict rot presence: logistic regression, feed forward neural networks, and convolutional neural networks. The results showed that wood decay could be detected, even if with accuracy varying among the two datasets. The best results on the Etnedal dataset were obtained using a convolution neural network with the first five components of a principal component analysis as input (OA = 65.5%), while on the Gran dataset, the best result was obtained using LASSO with logistic regression and data aggregated using the weighted mean (OA = 61.4%). In general, the differences among aggregated and unaggregated data were small. Numéro de notice : A2022-352 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.3390/rs14081892 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.3390/rs14081892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100541
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1892[article]Deep learning for archaeological object detection on LiDAR: New evaluation measures and insights / Marco Fiorucci in Remote sensing, vol 14 n° 7 (April-1 2022)
![]()
[article]
Titre : Deep learning for archaeological object detection on LiDAR: New evaluation measures and insights Type de document : Article/Communication Auteurs : Marco Fiorucci, Auteur ; Wouter Baernd Verschoof-van der Vaart, Auteur ; Paolo Soleni, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1694 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] site archéologiqueRésumé : (auteur) Machine Learning-based workflows are being progressively used for the automatic detection of archaeological objects (intended as below-surface sites) in remote sensing data. Despite promising results in the detection phase, there is still a lack of a standard set of measures to evaluate the performance of object detection methods, since buried archaeological sites often have distinctive shapes that set them aside from other types of objects included in mainstream remote sensing datasets (e.g., Dataset of Object deTection in Aerial images, DOTA). Additionally, archaeological research relies heavily on geospatial information when validating the output of an object detection procedure, a type of information that is not normally considered in regular machine learning validation pipelines. This paper tackles these shortcomings by introducing two novel automatic evaluation measures, namely ‘centroid-based’ and ‘pixel-based’, designed to encode the salient aspects of the archaeologists’ thinking process. To test their usability, an experiment with different object detection deep neural networks was conducted on a LiDAR dataset. The experimental results show that these two automatic measures closely resemble the semi-automatic one currently used by archaeologists and therefore can be adopted as fully automatic evaluation measures in archaeological remote sensing detection. Adoption will facilitate cross-study comparisons and close collaboration between machine learning and archaeological researchers, which in turn will encourage the development of novel human-centred archaeological object detection tools. Numéro de notice : A2022-282 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14071694 En ligne : https://doi.org/10.3390/rs14071694 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100298
in Remote sensing > vol 14 n° 7 (April-1 2022) . - n° 1694[article]Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation / Yingjie Hu in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
PermalinkMTLM: a multi-task learning model for travel time estimation / Saijun Xu in Geoinformatica [en ligne], vol 26 n° 2 (April 2022)
PermalinkSpatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkHierarchical learning with backtracking algorithm based on the visual confusion label tree for large-scale image classification / Yuntao Liu in The Visual Computer, vol 38 n° 3 (March 2022)
PermalinkNeural map style transfer exploration with GANs / Sidonie Christophe in International journal of cartography, vol 8 n° 1 (March 2022)
PermalinkUltrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
PermalinkVisual vs internal attention mechanisms in deep neural networks for image classification and object detection / Abraham Montoya Obeso in Pattern recognition, vol 123 (March 2022)
PermalinkDetection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation / Ramazan Unlu in The Visual Computer, vol 38 n° 2 (February 2022)
PermalinkDecision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis / Haifa Tamiminia in Geocarto international, vol 37 n° inconnu ([25/01/2022])
PermalinkDetection of windthrown tree stems on UAV-orthomosaics using U-Net convolutional networks / Stefan Reder in Remote sensing, vol 14 n° 1 (January-1 2022)
Permalink