Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond > réseau neuronal artificiel > réseau neuronal profond
réseau neuronal profond |
Documents disponibles dans cette catégorie (18)



Etendre la recherche sur niveau(x) vers le bas
A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
![]()
[article]
Titre : A hierarchical deformable deep neural network and an aerial image benchmark dataset for surface multiview stereo reconstruction Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Xin Huang, Auteur ; Yujin Feng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5600812 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] approche hiérarchique
[Termes IGN] carte de profondeur
[Termes IGN] déformation d'objet
[Termes IGN] effet de profondeur cinétique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne
[Termes IGN] jeu de données
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] reconstruction d'image
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Multiview stereo (MVS) aerial image depth estimation is a research frontier in the remote sensing field. Recent deep learning-based advances in close-range object reconstruction have suggested the great potential of this approach. Meanwhile, the deformation problem and the scale variation issue are also worthy of attention. These characteristics of aerial images limit the applicability of the current methods for aerial image depth estimation. Moreover, there are few available benchmark datasets for aerial image depth estimation. In this regard, this article describes a new benchmark dataset called the LuoJia-MVS dataset ( https://irsip.whu.edu.cn/resources/resources_en_v2.php ), as well as a new deep neural network known as the hierarchical deformable cascade MVS network (HDC-MVSNet). The LuoJia-MVS dataset contains 7972 five-view images with a spatial resolution of 10 cm, pixel-wise depths, and precise camera parameters, and was generated from an accurate digital surface model (DSM) built from thousands of stereo aerial images. In the HDC-MVSNet network, a new full-scale feature pyramid extraction module, a hierarchical set of 3-D convolutional blocks, and “true 3-D” deformable 3-D convolutional layers are specifically designed by considering the aforementioned characteristics of aerial images. Overall and ablation experiments on the WHU and LuoJia-MVS datasets validated the superiority of HDC-MVSNet over the current state-of-the-art MVS depth estimation methods and confirmed that the newly built dataset can provide an effective benchmark. Numéro de notice : A2023-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3234694 En ligne : https://doi.org/10.1109/TGRS.2023.3234694 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102488
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 1 (January 2023) . - n° 5600812[article]Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India / Rabin Chakrabortty in Geocarto international, vol 37 n° 23 ([15/10/2022])
![]()
[article]
Titre : Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India Type de document : Article/Communication Auteurs : Rabin Chakrabortty, Auteur ; Subodh Chandra Pal, Auteur ; Fatemeh Rezaie, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6713 - 6735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie des risques
[Termes IGN] Inde
[Termes IGN] inondation
[Termes IGN] mousson
[Termes IGN] optimisation par essaim de particules
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau neuronal profond
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Flood-susceptibility mapping is an important component of flood risk management to control the effects of natural hazards and prevention of injury. We used a remote-sensing and geographic information system (GIS) platform and a machine-learning model to develop a flood susceptibility map of Kangsabati River Basin, India where flash flood is common due to monsoon precipitation with short duration and high intensity. And in this subtropical region, climate change’s impact helps to influence the distribution of rainfall and temperature variation. We tested three models-particle swarm optimization (PSO), an artificial neural network (ANN), and a deep-leaning neural network (DLNN)-and prepared a final flood susceptibility map to classify flood-prone regions in the study area. Environmental, topographical, hydrological, and geological conditions were included in the models, and the final model was selected based on the relations between potentiality of causative factors and flood risk based on multi-collinearity analysis. The model results were validated and evaluated using the area under receiver operating characteristic (ROC) curve (AUC), which is an indicator of the current state of the environment and a value >0.95 implies a greater risk of flash floods. The AUC values for ANN, DLNN, and PSO for training datasets were 0.914, 0.920, and 0.942, respectively. Among these three models, PSO showed the best performance with an AUC value of 0.942. The PSO approach is applicable for flood susceptibility mapping of the eastern part of India, a subtropical region, to allow flood mitigation and help to improve risk management in this region. Numéro de notice : A2022-750 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1953618 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1080/10106049.2021.1953618 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101742
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6713 - 6735[article]HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion / Kun Li in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
![]()
[article]
Titre : HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion Type de document : Article/Communication Auteurs : Kun Li, Auteur ; Wei Zhang, Auteur ; Dian Yu, Auteur ; Xin Tian, Auteur Année de publication : 2022 Article en page(s) : pp 30 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image floue
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] réseau neuronal profondRésumé : (Auteur) Traditional approaches mainly fuse a hyperspectral image (HSI) with a high-resolution multispectral image (MSI) to improve the spatial resolution of the HSI. However, such improvement in the spatial resolution of HSIs is still limited because the spatial resolution of MSIs remains low. To further improve the spatial resolution of HSIs, we propose HyperNet, a deep network for the fusion of HSI, MSI, and panchromatic image (PAN), which effectively injects the spatial details of an MSI and a PAN into an HSI while preserving the spectral information of the HSI. Thus, we design HyperNet on the basis of a uniform fusion strategy to solve the problem of complex fusion of three types of sources (i.e., HSI, MSI, and PAN). In particular, the spatial details of the MSI and the PAN are extracted by multiple specially designed multiscale-attention-enhance blocks in which multi-scale convolution is used to adaptively extract features from different reception fields, and two attention mechanisms are adopted to enhance the representation capability of features along the spectral and spatial dimensions, respectively. Through the capability of feature reuse and interaction in a specially designed dense-detail-insertion block, the previously extracted features are subsequently injected into the HSI according to the unidirectional feature propagation among the layers of dense connection. Finally, we construct an efficient loss function by integrating the multi-scale structural similarity index with the norm, which drives HyperNet to generate high-quality results with a good balance between spatial and spectral qualities. Extensive experiments on simulated and real data sets qualitatively and quantitatively demonstrate the superiority of HyperNet over other state-of-the-art methods. Numéro de notice : A2022-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.04.001 Date de publication en ligne : 07/04/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100461
in ISPRS Journal of photogrammetry and remote sensing > vol 188 (June 2022) . - pp 30 - 44[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022061 SL Revue Centre de documentation Revues en salle Disponible 081-2022063 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Interactive semantic segmentation of aerial images with deep neural networks / Gaston Lenczner (2022)
![]()
Titre : Interactive semantic segmentation of aerial images with deep neural networks Type de document : Thèse/HDR Auteurs : Gaston Lenczner, Auteur ; Guy Le Besnerais, Directeur de thèse Editeur : Bures-sur-Yvette : Université Paris-Saclay Année de publication : 2022 Importance : 120 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université Paris-Saclay, Spécialité : Traitement du signal et des imagesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] programme interactif
[Termes IGN] réalité de terrain
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Nous proposons dans cette thèse de mettre en place une collaboration entre un réseau de neurones profond et un utilisateur pour collecter rapidement des cartes de segmentation sémantiques précises d'images de télédétection. En bref, l'utilisateur interagit de manière itérative avec le réseau pour corriger ses prédictions initialement erronées. Concrètement, ces interactions sont des annotations représentant les labels sémantiques. Nos contributions se décomposent en quatre parties. Premièrement, nous proposons deux schémas d'apprentissage interactif pour intégrer les entrées de l'utilisateur dans les réseaux de neurones profonds. Le premier concatène les annotations de l'utilisateur avec les autres entrées du réseau (comme l'image RGB). Nous l'appliquons à la fois aux architectures convolutionnelles et aux Transformers. La seconde utilise les annotations comme une vérité terrain partielle pour ré-entraîner le réseau. Ensuite, nous proposons une stratégie d'apprentissage actif pour guider l'utilisateur vers les zones les plus pertinentes à annoter. Dans ce but, nous adaptons différentes fonctions d'acquisition issues de l'état de l'art pour évaluer l'incertitude du réseau de neurones. Enfin, nous proposons de modifier l'espace de sortie de l'algorithme pour l'adapter rapidement à de nouvelles classes sous faible supervision. Pour atténuer les problèmes de décalage de la classe d'arrière plan et d'oubli catastrophique inhérents à ce problème, nous comparons différentes régularisations et tirons parti d'une stratégie dite de pseudo-labeling. À travers des expériences sur plusieurs jeux de données de télédétection, nous démontrons l'efficacité et analysons les méthodes proposées. La combinaison de ces différents travaux aboutit à un framework robuste et polyvalent pour corriger de manière interactive les cartes de segmentation sémantique produites par des algorithmes d'apprentissage profond en télédétection. Note de contenu : Chapter 1. Introduction
1.1 Context
1.2 Open research questions
1.3 Contributions
1.4 Manuscript outline
1.5 Publications
Chapter 2. Related work
2.1 Understanding the stakes
2.2 Interactive learning
2.3 Metrics & datasets
Chapter 3. Fast interactive learning
3.1 Motivation & contribution
3.2 DISIR : Deep Image Segmentation with Interactive Refinements
3.3 Evaluation process
3.4 Experiments
3.5 Conclusion
Chapter 4. Interactive learning at scale
4.1 Transformers for a better propagation of the annotations
4.2 DISCA : Deep Image Segmentation with Continual Adaptation
Chapter 5. Guiding the interactions
5.1 Motivation & contributions
5.2 DIAL : Deep Interactive and Active Learning
5.3 Experiments
5.4 Conclusion
Chapter 6. Towards interactive class-incremental segmentation
6.1 Motivation & contributions
6.2 Methodology
6.3 Experiments
6.4 Conclusion
Chapter 7. Conclusion
7.1 Summary of contributions
7.2 Future worksNuméro de notice : 26906 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Traitement du signal et des images : Paris-Saclay : 2022 Organisme de stage : Département Traitement de l’Information et Systèmes DTIS (ONERA) nature-HAL : Thèse DOI : sans Date de publication en ligne : 14/10/2022 En ligne : https://tel.archives-ouvertes.fr/tel-03814978/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101918 A deep multi-modal learning method and a new RGB-depth data set for building roof extraction / Mehdi Khoshboresh Masouleh in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
![]()
[article]
Titre : A deep multi-modal learning method and a new RGB-depth data set for building roof extraction Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2021 Article en page(s) : pp 759 - 766 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] détection du bâti
[Termes IGN] données multisources
[Termes IGN] effet de profondeur cinétique
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] toitRésumé : (Auteur) This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256 training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively. Numéro de notice : A2021-677 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00007R2 Date de publication en ligne : 01/10/2021 En ligne : https://doi.org/10.14358/PERS.21-00007R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98878
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 759 - 766[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible A deep translation (GAN) based change detection network for optical and SAR remote sensing images / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
PermalinkTwo hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
PermalinkSimulating multi-exit evacuation using deep reinforcement learning / Dong Xu in Transactions in GIS, Vol 25 n° 3 (June 2021)
PermalinkDeep convolutional neural networks for scene understanding and motion planning for self-driving vehicles / Abdelhak Loukkal (2021)
PermalinkExploration of reinforcement learning algorithms for autonomous vehicle visual perception and control / Florence Carton (2021)
PermalinkPermalinkA deep learning architecture for semantic address matching / Yue Lin in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
PermalinkVolcano-seismic transfer learning and uncertainty quantification with bayesian neural networks / Angel Bueno in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
PermalinkSuperpixel-enhanced deep neural forest for remote sensing image semantic segmentation / Li Mi in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkTorch-Points3D: A modular multi-task framework for reproducible deep learning on 3D point clouds / Thomas Chaton (2020)
Permalink