Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image PlanetScope
image PlanetScopeVoir aussi |
Documents disponibles dans cette catégorie (10)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Consistency assessment of multi-date PlanetScope imagery for seagrass percent cover mapping in different seagrass meadows / Pramaditya Wicaksono in Geocarto international, vol 37 n° 27 ([20/12/2022])
[article]
Titre : Consistency assessment of multi-date PlanetScope imagery for seagrass percent cover mapping in different seagrass meadows Type de document : Article/Communication Auteurs : Pramaditya Wicaksono, Auteur ; Amanda Maishella, Auteur ; Wahyu Lazuardi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 15161 - 15186 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] carte thématique
[Termes IGN] classification par arbre de décision
[Termes IGN] classification pixellaire
[Termes IGN] correction d'image
[Termes IGN] filtrage du bruit
[Termes IGN] herbier marin
[Termes IGN] image PlanetScope
[Termes IGN] IndonésieRésumé : (auteur) Seagrass percent cover is a crucial and influential component of the biophysical characteristics of seagrass beds and is a key parameter for monitoring seagrass conditions. Therefore, the availability of seagrass percent cover maps greatly assists in sustainable coastal ecosystem management. This research aimed to assess the consistency of PlanetScope imagery for seagrass percent cover mapping using two study areas, namely Parang Island and Labuan Bajo, Indonesia. Assessing the consistency of the PlanetScope imagery performance in seagrass percent cover mapping helps understand the effects of variations in the image quality on its performance in monitoring changes in seagrass cover. Percent cover maps were derived using object-based image analysis (image segmentation and random forest) and pixel-based random forest algorithm. Accuracy assessment and consistency analysis were conducted on the basis of the following three approaches: overall accuracy consistency, agreement percentage and consistent pixel locations. Results show that PlanetScope images can fairly consistently map seagrass percent cover for a specific area across different dates. However, these images produced different levels of accuracy when used for mapping in seagrass meadows with various characteristics and benthic cover complexities. The mapping accuracy (OA–overall accuracy) and consistency (AP–agreement percentage) in patchy seagrass meadows (Parang Island, mean OA 18.4%–38.6%, AP 44.1%–70.3%) are different from those in continuous seagrass meadows (Labuan Bajo, OA 43.0%–56.2%, and AP 41.8%–55.8%). Moreover, PlanetScope images are consistent when used for mapping seagrasses with low and high percent covers but strive to obtain good consistency for medium percent cover due to the combination of seagrass and non-seagrass in a pixel. Furthermore, images with relatively similar image acquisition conditions (i.e., winds, aerosol optical depth, signal-to-noise ratio, and sunglint intensity) produce better consistency. The OA is related to the image acquisition conditions, whilst the AP is related to variation in these conditions. Nevertheless, PlanetScope is still the best high spatial resolution image that provides daily acquisition and is highly beneficial for various applications in tropical areas with persistent cloud coverage. Numéro de notice : A2022-932 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2096122 Date de publication en ligne : 06/07/2022 En ligne : https://doi.org/10.1080/10106049.2022.2096122 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102668
in Geocarto international > vol 37 n° 27 [20/12/2022] . - pp 15161 - 15186[article]Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)
[article]
Titre : Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope Type de document : Article/Communication Auteurs : V.S. Martins, Auteur ; D.P. Roy, Auteur ; H. Huang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113203 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique (géographie politique)
[Termes IGN] apprentissage profond
[Termes IGN] carte thématique
[Termes IGN] cartographie automatique
[Termes IGN] correction radiométrique
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-OLI
[Termes IGN] image PlanetScope
[Termes IGN] incendie
[Termes IGN] précision de la classification
[Termes IGN] régression
[Termes IGN] savaneRésumé : (auteur) High spatial resolution commercial satellite data provide new opportunities for terrestrial monitoring. The recent availability of near-daily 3 m observations provided by the PlanetScope constellation enables mapping of small and spatially fragmented burns that are not detected at coarser spatial resolution. This study demonstrates, for the first time, the potential for automated PlanetScope 3 m burned area mapping. The PlanetScope sensors have no onboard calibration or short-wave infrared bands, and have variable overpass times, making them challenging to use for large area, automated, burned area mapping. To help overcome these issues, a U-Net deep learning algorithm was developed to classify burned areas from two-date Planetscope 3 m image pairs acquired at the same location. The deep learning approach, unlike conventional burned area mapping algorithms, is applied to image spatial subsets and not to single pixels and so incorporates spatial as well as spectral information. Deep learning requires large amounts of training data. Consequently, transfer learning was undertaken using pre-existing Landsat-8 derived burned area reference data to train the U-Net that was then refined with a smaller set of PlanetScope training data. Results across Africa considering 659 PlanetScope radiometrically normalized image pairs sensed one day apart in 2019 are presented. The U-Net was first trained with different numbers of randomly selected 256 × 256 30 m pixel patches extracted from 92 pre-existing Landsat-8 burned area reference data sets defined for 2014 and 2015. The U-Net trained with 300,000 Landsat patches provided about 13% 30 m burn omission and commission errors with respect to 65,000 independent 30 m evaluation patches. The U-Net was then refined by training on 5,000 256 × 256 3 m patches extracted from independently interpreted PlanetScope burned area reference data. Qualitatively, the refined U-Net was able to more precisely delineate 3 m burn boundaries, including the interiors of unburned areas, and better classify “faint” burned areas indicative of low combustion completeness and/or sparse burns. The refined U-Net 3 m classification accuracy was assessed with respect to 20 independently interpreted PlanetScope burned area reference data sets, composed of 339.4 million 3 m pixels, with low 12.29% commission and 12.09% omission errors. The dependency of the U-Net classification accuracy on the burned area proportion within 3 m pixel 256 × 256 patches was also examined, and patches Numéro de notice : A2022-774 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113203 Date de publication en ligne : 08/08/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101802
in Remote sensing of environment > vol 280 (October 2022) . - n° 113203[article]Potential and limitation of PlanetScope images for 2-D and 3-D Earth surface monitoring with example of applications to glaciers and earthquakes / Saif Aati in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
[article]
Titre : Potential and limitation of PlanetScope images for 2-D and 3-D Earth surface monitoring with example of applications to glaciers and earthquakes Type de document : Article/Communication Auteurs : Saif Aati , Auteur ; Jean-Philippe Avouac, Auteur ; Ewelina Rupnik , Auteur ; Marc Pierrot-Deseilligny , Auteur Année de publication : 2022 Article en page(s) : n° 4512919 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de scène 3D
[Termes IGN] artefact
[Termes IGN] image PlanetScope
[Termes IGN] modèle de déformation des images
[Termes IGN] modèle par fonctions rationnelles
[Termes IGN] séisme
[Termes IGN] surveillance géologiqueRésumé : (auteur) The Planet PlanetScope (PS) CubeSat constellation acquires high-resolution optical images that cover the entire surface of the Earth daily, enabling an unprecedented capability to monitor the Earth’s surface changes. However, our analysis reveals artifacts of the geometry of PS images related to the imaging system and processing issues, limiting the usability of these data for various Earth science applications, including the monitoring of glaciers, dune motion, or the measurement of ground deformation due to earthquakes and landslides. Here, we analyze these artifacts and propose ways to remediate them. We use two examples to evaluate the data and assess the performance of our proposed approaches. The first is the ground deformation caused by the 2019 Ridgecrest earthquake sequence, California, USA, and the second is the 2018–2019 surge of the Shisper glacier in the Karakorum. Using an image correlation technique, we show that PS images exhibit several geometric artifacts, such as scene-to-scene misregistration, inconsistence geolocation accuracy between spectral bands, and topographic artifacts. Altogether, these artifacts make a quantitative analysis of ground displacement difficult and inaccurate. We present a method that remediates most of these geometric artifacts. In addition, we propose a framework for selecting the most appropriate images and a procedure for refining the rational function model (RFM) of unrectified images to monitor surface displacements and topography changes in 3-D. These tools should enhance the use of PS images for Earth science applications. Numéro de notice : A2022-951 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3215821 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3215821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103278
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 4512919[article]Amélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond / Yawogan Gbodjo (2021)
Titre : Amélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond Type de document : Thèse/HDR Auteurs : Yawogan Gbodjo, Auteur ; Dino Lenco, Directeur de thèse Editeur : Montpellier : Université de Montpellier Année de publication : 2021 Importance : 165 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse soutenue pour obtenir le grade de Docteur en Informatique de l'Université de MontpellierLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification dirigée
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] image PlanetScope
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] occupation du sol
[Termes IGN] production agricole
[Termes IGN] rendement agricole
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les systèmes de suivi des cultures jouent un rôle essentiel dans l'évaluation de la production agricole dans le monde. De nos jours, la disponibilité de plusieurs sources d'information satellitaire à large échelle, à haute résolution spatiale et à forte répétitivité temporelle, conjointe à l'essor des techniques d'apprentissage profond, offrent de nouvelles perspectives aux systèmes de suivi des cultures pour l'évaluation de la production agricole. Dans cette thèse, nous explorons des pistes méthodologiques pour améliorer le suivi de la production agricole à partir de la télédétection multi-source et des techniques d'apprentissage profond. Nous proposons deux méthodes pour caractériser l'occupation du sol et identifier les surfaces cultivées. La première approche est basée sur des réseaux de neurones récurrents équipés de mécanismes d'attention, employant des séries temporelles multi-sources radar et optique ainsi que des connaissances spécifiques de domaine. La seconde approche repose sur des réseaux de neurones convolutifs et explore davantage la combinaison multi-source et surtout multi-échelle grâce à l'intégration d'une source optique à très haute résolution spatiale. Nous évaluons ces méthodes à des échelles territoriale et locale en ayant systématiquement un regard croisé sur des sites d'études contrastés en agriculture conventionnelle et petite agriculture familiale. Nous menons également un travail d'investigation sur l'estimation et la prévision des rendements des surfaces cultivées, à l'échelle locale de la petite agriculture familiale en employant des séries temporelles multi-sources radar et optique. Dans ce contexte en outre limité par la disponibilité de données de référence, nous évaluons le potentiel de méthodes d'apprentissage profond par rapport à des approches traditionnellement utilisées. Globalement, l'évaluation des approches proposées pour identifier les surfaces cultivées montre que les techniques d'apprentissage profond semblent mieux adaptées que les méthodes traditionnelles d'apprentissage automatique pour tirer parti de la complémentarité des données multi-sources, multi-temporelles et multi-échelles à mesure qu'il y ait une quantité suffisante de données pour leur entraînement supervisé. Le travail d'investigation réalisé pour l'estimation et la prévision des rendements n'a par contre pas révélé de plus-value manifeste dans l'emploi de ces méthodes. Dans ce dernier cas, le contexte limité en données d'entraînement semble en être la principale explication. Note de contenu : Introduction
1- Télédétection et apprentissage automatique
2- Sites d’étude et données utilisées
3- Caractérisation de l’occupation du sol
4- Suivi des rendements en petite agriculture familiale
Conclusion et PerspectivesNuméro de notice : 15240 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Montpellier : 2021 Organisme de stage : TETIS DOI : sans En ligne : https://tel.hal.science/tel-03589421/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100474 Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] feuille (végétation)
[Termes IGN] forêt tempérée
[Termes IGN] houppier
[Termes IGN] image Aqua-MODIS
[Termes IGN] image captée par drone
[Termes IGN] image PlanetScope
[Termes IGN] image Terra-MODIS
[Termes IGN] phénologie
[Termes IGN] photosynthèse
[Termes IGN] série temporelle
[Termes IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 Date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December-1 2020)PermalinkA Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)PermalinkPermalinkDeep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery / Yuri Shendryk in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)PermalinkFeasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat / Radoslaw Gurdak in Geoinformation issues, Vol 10 n°1 (2018)Permalink