Descripteur
Termes IGN > imagerie > image spatiale > image satellite > image PlanetScope
image PlanetScopeVoir aussi |
Documents disponibles dans cette catégorie (7)



Etendre la recherche sur niveau(x) vers le bas
Amélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond / Yawogan Gbodjo (2021)
![]()
Titre : Amélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond Type de document : Thèse/HDR Auteurs : Yawogan Gbodjo, Auteur ; Dino Lenco, Directeur de thèse Editeur : Montpellier : Université de Montpellier Année de publication : 2021 Importance : 165 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse soutenue pour obtenir le grade de Docteur en Informatique de l'Université de MontpellierLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification dirigée
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] image PlanetScope
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] occupation du sol
[Termes IGN] production agricole
[Termes IGN] rendement agricole
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les systèmes de suivi des cultures jouent un rôle essentiel dans l'évaluation de la production agricole dans le monde. De nos jours, la disponibilité de plusieurs sources d'information satellitaire à large échelle, à haute résolution spatiale et à forte répétitivité temporelle, conjointe à l'essor des techniques d'apprentissage profond, offrent de nouvelles perspectives aux systèmes de suivi des cultures pour l'évaluation de la production agricole. Dans cette thèse, nous explorons des pistes méthodologiques pour améliorer le suivi de la production agricole à partir de la télédétection multi-source et des techniques d'apprentissage profond. Nous proposons deux méthodes pour caractériser l'occupation du sol et identifier les surfaces cultivées. La première approche est basée sur des réseaux de neurones récurrents équipés de mécanismes d'attention, employant des séries temporelles multi-sources radar et optique ainsi que des connaissances spécifiques de domaine. La seconde approche repose sur des réseaux de neurones convolutifs et explore davantage la combinaison multi-source et surtout multi-échelle grâce à l'intégration d'une source optique à très haute résolution spatiale. Nous évaluons ces méthodes à des échelles territoriale et locale en ayant systématiquement un regard croisé sur des sites d'études contrastés en agriculture conventionnelle et petite agriculture familiale. Nous menons également un travail d'investigation sur l'estimation et la prévision des rendements des surfaces cultivées, à l'échelle locale de la petite agriculture familiale en employant des séries temporelles multi-sources radar et optique. Dans ce contexte en outre limité par la disponibilité de données de référence, nous évaluons le potentiel de méthodes d'apprentissage profond par rapport à des approches traditionnellement utilisées. Globalement, l'évaluation des approches proposées pour identifier les surfaces cultivées montre que les techniques d'apprentissage profond semblent mieux adaptées que les méthodes traditionnelles d'apprentissage automatique pour tirer parti de la complémentarité des données multi-sources, multi-temporelles et multi-échelles à mesure qu'il y ait une quantité suffisante de données pour leur entraînement supervisé. Le travail d'investigation réalisé pour l'estimation et la prévision des rendements n'a par contre pas révélé de plus-value manifeste dans l'emploi de ces méthodes. Dans ce dernier cas, le contexte limité en données d'entraînement semble en être la principale explication. Note de contenu : Introduction
1- Télédétection et apprentissage automatique
2- Sites d’étude et données utilisées
3- Caractérisation de l’occupation du sol
4- Suivi des rendements en petite agriculture familiale
Conclusion et PerspectivesNuméro de notice : 15240 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Montpellier : 2021 Organisme de stage : TETIS DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03589421/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100474 Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] feuille (végétation)
[Termes IGN] forêt tempérée
[Termes IGN] houppier
[Termes IGN] image Aqua-MODIS
[Termes IGN] image captée par drone
[Termes IGN] image PlanetScope
[Termes IGN] image Terra-MODIS
[Termes IGN] phénologie
[Termes IGN] photosynthèse
[Termes IGN] série temporelle
[Termes IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 Date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December-1 2020)
![]()
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aide à la décision
[Termes IGN] classification non dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Corée du sud
[Termes IGN] détection de changement
[Termes IGN] dommage
[Termes IGN] estimation par noyau
[Termes IGN] flou
[Termes IGN] gestion des risques
[Termes IGN] image à très haute résolution
[Termes IGN] image Geoeye
[Termes IGN] image multibande
[Termes IGN] image PlanetScope
[Termes IGN] incendie de forêt
[Termes IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 Date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December-1 2020) . - n° 3835[article]A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions Type de document : Article/Communication Auteurs : Shahryar K. Ahmad, Auteur ; Faisal Hossain, Auteur ; Hisham Eldardiry, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2471 - 2480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bangladesh
[Termes IGN] climat tropical
[Termes IGN] eau de surface
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-8
[Termes IGN] image PlanetScope
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] plan d'eau
[Termes IGN] radar à antenne synthétique
[Termes IGN] reconnaissance de surface
[Termes IGN] surveillance hydrologique
[Termes IGN] télédétection spatiale
[Termes IGN] zone humideRésumé : (auteur) Consistent estimation of water surface area from remote sensing remains challenging in regions such as South Asia with vegetation, mountainous topography, and persistent monsoonal cloud cover. High-resolution optical imagery, which is often used for global inundation mapping, is highly impacted by clouds, while synthetic aperture radar (SAR) imagery is not impacted by clouds and is affected by both topographic layover and vegetation. Here, we compare and contrast inundation extent measurements from visible (Landsat-8 and Sentinel-2) and SAR (Sentinel-1) imagery. Each data type (wavelength) has complementary strengths and weaknesses which were gauged separately over selected water bodies in Bangladesh. High-resolution cloud-free PlanetScope imagery at 3-m resolution was used as a reference to check the accuracy of each technique and data type. Next, the optical and radar images were fused for a rule-based water area classification algorithm to derive the optimal decision for the water mask. Results indicate that the fusion approach can improve the overall accuracy by up to 3.8%, 18.2%, and 8.3% during the wet season over using the individual products of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three sites, while providing increased observational frequency. The fusion-derived products resulted in overall accuracy ranging from 85.8% to 98.7% and Kappa coefficient varying from 0.61 to 0.83. The proposed SAR-visible fusion technique has potential for improving satellite-based surface water monitoring and storage changes, especially for smaller water bodies in humid tropical climate of South Asia. Numéro de notice : A2020-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950705 Date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950705 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94868
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2471 - 2480[article]
Titre : Applications of remote sensing in coastal areas Type de document : Monographie Auteurs : Konstantinos Topouzelis, Éditeur scientifique ; Apostolos Papakonstantinou, Éditeur scientifique ; Siman Singha, Éditeur scientifique ; et al., Auteur Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 288 p. Format : 16 x 23 cm ISBN/ISSN/EAN : 978-3-03928-659-1 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] érosion côtière
[Termes IGN] falaise
[Termes IGN] habitat (nature)
[Termes IGN] herbier marin
[Termes IGN] image PlanetScope
[Termes IGN] modèle numérique de surface
[Termes IGN] surveillance du littoralRésumé : (éditeur) Coastal areas are remarkable regions with high spatiotemporal variability. A large population is affected by their physical and biological processes—resulting from effects on tourism to biodiversity and productivity. Coastal ecosystems perform several critical ecosystem services and functions, such as water oxygenation and nutrients provision, seafloor and beach stabilization (as sediment is controlled and trapped within the rhizomes of the seagrass meadows), carbon burial, as areas for nursery, and as refuge for several commercial and endemic species. Knowledge of the spatial distribution of marine habitats is prerequisite information for the conservation and sustainable use of marine resources. Remote sensing from UAVs to spaceborne sensors is offering a unique opportunity to measure, analyze, quantify, map, and explore the processes on the coastal areas at high temporal frequencies. This Special Issue on “Application of Remote Sensing in Coastal Areas” is specifically addresses those successful applications—from local to regional scale—in coastal environments related to ecosystem productivity, biodiversity, sea level rise. Note de contenu : 1- Monitoring cliff erosion with LiDAR surveys and Bayesian network-based data analysis
2- Cubesats allow high spatiotemporal estimates of satellite-derived bathymetry
3- Comparison of Pixel- and object-based classification methods of unmanned aerial vehicle data applied to coastal dune vegetation communities: Casal Borsetti case stud
4- Capturing coastal dune natural vegetation types using a phenology-based mapping approach: The potential of Sentinel-2
5- Sub-pixel waterline extraction: Characterising accuracy and sensitivity to indices and spectra
6- Satellite observations of wind wake and associated oceanic thermal responses: A case study of Hainan Island wind wake
7- Comparison of true-color and multispectral unmanned aerial systems imagery for marine habitat mapping using object-based image analysis
8- Spatial and temporal variability of open-ocean barrier islands along the Indus Delta region
9- Characterizing and monitoring ground settlement of marine reclamation land of Xiamen New Airport, China with Sentinel-1 SAR datasets
10- Deriving high spatial-resolution coastal topography from sub-meter satellite stereo imagery
11- Photon-counting Lidar: An adaptive signal detection method for different land cover types in coastal area
12- Automatic semi-global artificial shoreline subpixel localization algorithm for Landsat imagery
13- Analysis of ship detection performance with full-, compact- and dual-polarimetric SAR
14- Sea ice extent detection in the Bohai Sea using Sentinel-3 OLCI dataNuméro de notice : 28689 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-03928-659-1 En ligne : https://doi.org/10.3390/books978-3-03928-659-1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100128 Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery / Yuri Shendryk in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
PermalinkFeasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat / Radoslaw Gurdak in Geoinformation issues, Vol 10 n°1 (2018)
Permalink