Descripteur
Termes descripteurs IGN > imagerie > image spatiale > image satellite > image PlanetScope
image PlanetScopeVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations / Shengbiao Wu in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations Type de document : Article/Communication Auteurs : Shengbiao Wu, Auteur ; Jing Wang, Auteur ; Zhengbing Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 48 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] forêt tempérée
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image MODIS
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] phénologie
[Termes descripteurs IGN] photosynthèse
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance forestièreRésumé : (auteur) In temperate forests, autumn leaf phenology signals the end of leaf growing season and shows large variability across tree-crowns, which importantly mediates photosynthetic seasonality, hydrological regulation, and nutrient cycling of forest ecosystems. However, critical challenges remain with the monitoring of autumn leaf phenology at the tree-crown scale due to the lack of spatially explicit information for individual tree-crowns and high (spatial and temporal) resolution observations with nadir view. Recent availability of the PlanetScope constellation with a 3 m spatial resolution and near-daily nadir view coverage might help address these observational challenges, but remains underexplored. Here we developed an integration of PlanetScope with drone observations for improved monitoring of crown-scale autumn leaf phenology in a temperate forest in Northeast China. This integration includes: 1) visual identification of individual tree-crowns (and species) from drone observations; 2) extraction of time series of PlanetScope vegetation indices (VIs) for each identified tree-crown; 3) derivation of three metrics of autumn leaf phenology from the extracted VI time series, including the start of fall (SOF), middle of fall (MOF), and end of fall (EOF); and 4) accuracy assessments of the PlanetScope-derived phenology metrics with reference from local phenocams. Our results show that (1) the PlanetScope-drone integration captures large inter-crown phenological variations, with a range of 28 days, 25 days, and 30 days for SOF, MOF, and EOF, respectively, (2) the extracted crown-level phenology metrics strongly agree with those derived from local phenocams, with a root-mean-square-error (RMSE) of 4.1 days, 3.0 days and 5.4 days for SOF, MOF, and EOF, respectively, and (3) PlanetScope maps large variations in autumn leaf phenology over the entire forest landscape with spatially explicit information. These results demonstrate the ability of our proposed method in monitoring the large spatial heterogeneity of crown-scale autumn leaf phenology in the temperate forest, suggesting the potential of using high-resolution satellites to advance crown-scale phenology studies over large geographical areas. Numéro de notice : A2021-011 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.017 date de publication en ligne : 13/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96305
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 36 - 48[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data / Minkyung Chung in Remote sensing, vol 12 n° 22 (December 2020)
![]()
[article]
Titre : A framework for unsupervised wildfire damage assessment using VHR satellite images with PlanetScope data Type de document : Article/Communication Auteurs : Minkyung Chung, Auteur ; Youkyung Han, Auteur ; Yongil Kim, Auteur Année de publication : 2020 Article en page(s) : n° 3835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] Corée du sud
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] dommage
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] flou
[Termes descripteurs IGN] gestion des risques
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image Geoeye
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] incendie de forêt
[Termes descripteurs IGN] Normalized Difference Vegetation IndexRésumé : (auteur) The application of remote sensing techniques for disaster management often requires rapid damage assessment to support decision-making for post-treatment activities. As the on-demand acquisition of pre-event very high-resolution (VHR) images is typically limited, PlanetScope (PS) offers daily images of global coverage, thereby providing favorable opportunities to obtain high-resolution pre-event images. In this study, we propose an unsupervised change detection framework that uses post-fire VHR images with pre-fire PS data to facilitate the assessment of wildfire damage. To minimize the time and cost of human intervention, the entire process was executed in an unsupervised manner from image selection to change detection. First, to select clear pre-fire PS images, a blur kernel was adopted for the blind and automatic evaluation of local image quality. Subsequently, pseudo-training data were automatically generated from contextual features regardless of the statistical distribution of the data, whereas spectral and textural features were employed in the change detection procedure to fully exploit the properties of different features. The proposed method was validated in a case study of the 2019 Gangwon wildfire in South Korea, using post-fire GeoEye-1 (GE-1) and pre-fire PS images. The experimental results verified the effectiveness of the proposed change detection method, achieving an overall accuracy of over 99% with low false alarm rate (FAR), which is comparable to the accuracy level of the supervised approach. The proposed unsupervised framework accomplished efficient wildfire damage assessment without any prior information by utilizing the multiple features from multi-sensor bi-temporal images. Numéro de notice : A2020-793 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12223835 date de publication en ligne : 22/11/2020 En ligne : https://doi.org/10.3390/rs12223835 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96570
in Remote sensing > vol 12 n° 22 (December 2020) . - n° 3835[article]A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions / Shahryar K. Ahmad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions Type de document : Article/Communication Auteurs : Shahryar K. Ahmad, Auteur ; Faisal Hossain, Auteur ; Hisham Eldardiry, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2471 - 2480 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Bangladesh
[Termes descripteurs IGN] climat tropical
[Termes descripteurs IGN] eau de surface
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] plan d'eau
[Termes descripteurs IGN] radar à antenne synthétique
[Termes descripteurs IGN] reconnaissance de surface
[Termes descripteurs IGN] surveillance hydrologique
[Termes descripteurs IGN] télédétection spatiale
[Termes descripteurs IGN] zone humideRésumé : (auteur) Consistent estimation of water surface area from remote sensing remains challenging in regions such as South Asia with vegetation, mountainous topography, and persistent monsoonal cloud cover. High-resolution optical imagery, which is often used for global inundation mapping, is highly impacted by clouds, while synthetic aperture radar (SAR) imagery is not impacted by clouds and is affected by both topographic layover and vegetation. Here, we compare and contrast inundation extent measurements from visible (Landsat-8 and Sentinel-2) and SAR (Sentinel-1) imagery. Each data type (wavelength) has complementary strengths and weaknesses which were gauged separately over selected water bodies in Bangladesh. High-resolution cloud-free PlanetScope imagery at 3-m resolution was used as a reference to check the accuracy of each technique and data type. Next, the optical and radar images were fused for a rule-based water area classification algorithm to derive the optimal decision for the water mask. Results indicate that the fusion approach can improve the overall accuracy by up to 3.8%, 18.2%, and 8.3% during the wet season over using the individual products of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three sites, while providing increased observational frequency. The fusion-derived products resulted in overall accuracy ranging from 85.8% to 98.7% and Kappa coefficient varying from 0.61 to 0.83. The proposed SAR-visible fusion technique has potential for improving satellite-based surface water monitoring and storage changes, especially for smaller water bodies in humid tropical climate of South Asia. Numéro de notice : A2020-198 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950705 date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950705 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94868
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2471 - 2480[article]Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery / Yuri Shendryk in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
![]()
[article]
Titre : Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery Type de document : Article/Communication Auteurs : Yuri Shendryk, Auteur ; Yannik Rist, Auteur ; Catherine Ticehurst, Auteur ; Peter Thorburn, Auteur Année de publication : 2019 Article en page(s) : pp 124 - 136 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] Amazonie
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Australie
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'ombre
[Termes descripteurs IGN] état de l'art
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] nuage
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] zone tropicale humideRésumé : (Auteur) With the increasing availability of high-resolution satellite imagery it is important to improve the efficiency and accuracy of satellite image indexing, retrieval and classification. Furthermore, there is a need for utilizing all available satellite imagery in identifying general land cover types and monitoring their changes through time irrespective of their spatial, spectral, temporal and radiometric resolutions. Therefore, in this study, we developed deep learning models able to efficiently and accurately classify cloud, shadow and land cover scenes in different high-resolution ( Numéro de notice : A2019-494 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.08.018 date de publication en ligne : 17/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93727
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 124 - 136[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019113 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Feasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat / Radoslaw Gurdak in Geoinformation issues, Vol 10 n°1 (2018)
![]()
[article]
Titre : Feasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat Type de document : Article/Communication Auteurs : Radoslaw Gurdak, Auteur ; Patryk Grzybowski, Auteur Année de publication : 2019 Article en page(s) : pp 27 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] Enhanced vegetation index
[Termes descripteurs IGN] étude de faisabilité
[Termes descripteurs IGN] image PlanetScope
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] Soil Adjusted Vegetation IndexRésumé : (auteur) The main objective of the presented work is to assess applicability of vegetation indices derived from non-commercial and commercial satellites for monitoring development stages of winter wheat. Two types of data were used in the study: Sentinel-2 and PlanetScope images. Various vegetation indices were derived from these data and correlated with ground measured LAI values. The results of the study revealed that there is a good relationship between satellite based indices – Normalized Difference Vegetation Index – NDVI, Enhanced Vegetation Index – EVI, Soil Adjusted Vegetation Index – SAVI and ground based LAI, but strength of this relation depends on the phase of crop development. Sentinel-2 and PlanetScope data are suitable for estimating LAI with high accuracy and their precision for LAI determination is very similar. Depending on availability, they can be used interchangeably. The highest correlation between ground measured LAI and vegetation indices for Sentinel-2 appeared SAVI – r = 0.862 (phase: early tillering) and for PlanetScope NDVI – r = 0.667 (phase: ripening). Compatibility of average LAI values derived from PlanetScope and Sentinel-2 images are 33.21% and 10.63%. Numéro de notice : A2018-647 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : sans En ligne : http://www.igik.edu.pl/en/a/Geoinformation-Issues-Vol-10-No-1-2018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93657
in Geoinformation issues > Vol 10 n°1 (2018) . - pp 27 - 35[article]