Descripteur
Termes descripteurs IGN > World Urban Database and Access Portal Tools
World Urban Database and Access Portal ToolsVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images / Cheolhee Yoo in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
![]()
[article]
Titre : Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images Type de document : Article/Communication Auteurs : Cheolhee Yoo, Auteur ; Daehyeon Han, Auteur ; Jungho Im, Auteur ; Benjamin Bechtel, Auteur Année de publication : 2019 Article en page(s) : pp 155 - 170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Chicago (Illinois)
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] climat urbain
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] ilot thermique urbain
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] Madrid (Espagne)
[Termes descripteurs IGN] Rome
[Termes descripteurs IGN] World Urban Database and Access Portal Tools
[Termes descripteurs IGN] zone urbaine denseRésumé : (Auteur) The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database and Portal Tool (WUDAPT) method using a random forest (RF) machine learning classifier. Some studies have proposed modified RF and convolutional neural network (CNN) approaches. This study aims to compare CNN with an RF classifier for LCZ mapping in great detail. We designed five schemes (three RF-based schemes (S1–S3) and two CNN-based ones (S4–S5)), which consist of various combinations of input features from bitemporal Landsat 8 data over four global mega cities: Rome, Hong Kong, Madrid, and Chicago. Among the five schemes, the CNN-based one with the incorporation of a larger neighborhood information showed the best classification performance. When compared to the WUDAPT workflow, the overall accuracies for entire land cover classes (OA) and for urban LCZ types (i.e., LCZ1-10; OAurb) increased by about 6–8% and 10–13%, respectively, for the four cities. The transferability of LCZ models for the four cities were evaluated, showing that CNN consistently resulted in higher accuracy (increased by about 7–18% and 18–29% for OA and OAurb, respectively) than RF. This study revealed that the CNN classifier classified particularly well for the specific LCZ classes in which buildings were mixed with trees or buildings or plants were sparsely distributed. The research findings can provide a basis for guidance of future LCZ classification using deep learning. Numéro de notice : A2019-495 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.009 date de publication en ligne : 19/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93728
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 155 - 170[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019113 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt