Descripteur
Documents disponibles dans cette catégorie (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation / Hamid Jafarzadeh in Remote sensing, vol 13 n° 21 (November-1 2021)
[article]
Titre : Bagging and boosting ensemble classifiers for classification of multispectral, hyperspectral and PolSAR data: A comparative evaluation Type de document : Article/Communication Auteurs : Hamid Jafarzadeh, Auteur ; Masoud Mahdianpari, Auteur ; Eric Gill, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4405 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] boosting adapté
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données polarimétriques
[Termes IGN] ensachage
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] image ROSISRésumé : (auteur) In recent years, several powerful machine learning (ML) algorithms have been developed for image classification, especially those based on ensemble learning (EL). In particular, Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) methods have attracted researchers’ attention in data science due to their superior results compared to other commonly used ML algorithms. Despite their popularity within the computer science community, they have not yet been well examined in detail in the field of Earth Observation (EO) for satellite image classification. As such, this study investigates the capability of different EL algorithms, generally known as bagging and boosting algorithms, including Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), XGBoost, LightGBM, and Random Forest (RF), for the classification of Remote Sensing (RS) data. In particular, different classification scenarios were designed to compare the performance of these algorithms on three different types of RS data, namely high-resolution multispectral, hyperspectral, and Polarimetric Synthetic Aperture Radar (PolSAR) data. Moreover, the Decision Tree (DT) single classifier, as a base classifier, is considered to evaluate the classification’s accuracy. The experimental results demonstrated that the RF and XGBoost methods for the multispectral image, the LightGBM and XGBoost methods for hyperspectral data, and the XGBoost and RF algorithms for PolSAR data produced higher classification accuracies compared to other ML techniques. This demonstrates the great capability of the XGBoost method for the classification of different types of RS data. Numéro de notice : A2021-823 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13214405 Date de publication en ligne : 02/11/2021 En ligne : https://doi.org/10.3390/rs13214405 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98938
in Remote sensing > vol 13 n° 21 (November-1 2021) . - n° 4405[article]Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification / Laxmi Narayana Eeti in Geocarto international, vol 36 n° 16 ([01/09/2021])
[article]
Titre : Two hidden layer neural network-based rotation forest ensemble for hyperspectral image classification Type de document : Article/Communication Auteurs : Laxmi Narayana Eeti, Auteur ; Krishna Mohan Buddhiraju, Auteur Année de publication : 2021 Article en page(s) : pp 1820 - 1837 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image ROSIS
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] réseau neuronal profond
[Termes IGN] Rotation Forest classificationRésumé : (auteur) Decision tree-based Rotation Forest could generate satisfactory but lower classification accuracy for a given training sample set and image data, owing to the inherent disadvantages in decision trees, namely myopic, replication and fragmentation problem. To improve performance of Rotation Forest technique, we propose to utilize two-hidden-layered-feedforward neural network as base classifier instead of decision tree. We examine the classification performance of proposed model under two situations, namely when free network parameters are maintained the same across all ensemble components and otherwise. The proposed model, where each component is initialized with different pair of initial weights and bias, performs better than decision tree-based Rotation Forest on three different Hyperspectral sensor datasets – AVIRIS, ROSIS and Hyperion. Improvements in classification accuracy are above 2% and up to 3% depending upon dataset. Also, the proposed model achieves improvement in accuracy over Random Forest in the range 4.2–8.8%. Numéro de notice : A2021-581 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678680 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678680 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98193
in Geocarto international > vol 36 n° 16 [01/09/2021] . - pp 1820 - 1837[article]Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture / Pashrant K. Srivastava in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
[article]
Titre : Random forests with bagging and genetic algorithms coupled with least trimmed squares regression for soil moisture deficit using SMOS satellite soil moisture Type de document : Article/Communication Auteurs : Pashrant K. Srivastava, Auteur ; George P. Petropoulos, Auteur ; Rajendra Prasad, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 507 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme génétique
[Termes IGN] Angleterre
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] ensachage
[Termes IGN] humidité du sol
[Termes IGN] image SMOS
[Termes IGN] régression des moindres carrés partielsRésumé : (auteur) Soil Moisture Deficit (SMD) is a key indicator of soil water content changes and is valuable to a variety of applications, such as weather and climate, natural disasters, agricultural water management, etc. Soil Moisture and Ocean Salinity (SMOS) is a dedicated mission focused on soil moisture retrieval and can be utilized for SMD estimation. In this study, the use of soil moisture derived from SMOS has been provided for the estimation of SMD at a catchment scale. Several approaches for the estimation of SMD are implemented herein, using algorithms such as Random Forests (RF) and Genetic Algorithms coupled with Least Trimmed Squares (GALTS) regression. The results show that for SMD estimation, the RF algorithm performed best as compared to the GALTS, with Root Mean Square Errors (RMSEs) of 0.021 and 0.024, respectively. All in all, our study findings can provide important assistance towards developing the accuracy and applicability of remote sensing-based products for operational use. Numéro de notice : A2021-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10080507 Date de publication en ligne : 27/07/2021 En ligne : https://doi.org/10.3390/ijgi10080507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98220
in ISPRS International journal of geo-information > vol 10 n° 8 (August 2021) . - n° 507[article]Integrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India / Sunil Saha in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
[article]
Titre : Integrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India Type de document : Article/Communication Auteurs : Sunil Saha, Auteur ; Gopal Chandra, Auteur ; Biswajeet Pradhan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 29 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification hybride
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] déboisement
[Termes IGN] ensachage
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Rotation Forest classification
[Termes IGN] système d'information géographiqueRésumé : (auteur) The rapid expansion of human settlement, agricultural land and roads because of population growth in several regions of the world has contributed to the depletion of forest land. In this study, novel ensemble intelligent approaches using bagging, dagging and rotation forest (RTF) as meta classifiers of multilayer perceptron (MLP) were used to predict spatial deforestation probability (DP) in Gumani Basin, India. The success rate and correctness of prediction of the ensemble models were compared with MLP. A total of 1000 deforested pixels and 14 deforestation determining factors (DDFs) were used. The ensemble models were trained using 70% of the deforested pixels and validated with the remaining 30%. DDFs were chosen by applying the information gain ratio and Relief-F test methods. Distance to settlement, population growth and distance to roads were the most important factors. The results of DP modelling demonstrated that nearly 16.82%–12.64% of the basin had very high DP. All four models created DP maps with reasonable prediction accuracy and goodness of fit, but the best map was produced by MLP-bagging. The accuracy of the MLP neural net model was increased 2-3% after ensemble with the hybrid meta classifiers (RTF, bagging and dagging). The proposed method could be used for deforestation prediction in other areas having similar geo-environmental conditions. Furthermore, the findings might be used as a basis for future research and could help planners in forest management. Numéro de notice : A2021-106 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1860139 Date de publication en ligne : 22/12/2020 En ligne : https://doi.org/10.1080/19475705.2020.1860139 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96903
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 29 - 62[article]Analyse de l'incertitude et de la précision thématique de classifications GEOBIA d'une image WorldView-2 / François Messner in Revue Française de Photogrammétrie et de Télédétection, n° 216 (février 2018)
[article]
Titre : Analyse de l'incertitude et de la précision thématique de classifications GEOBIA d'une image WorldView-2 Type de document : Article/Communication Auteurs : François Messner, Auteur ; Jeannine Corbonnois, Auteur ; Fanny Stella Tchitouo Ntenzou, Auteur Année de publication : 2018 Article en page(s) : pp 19 - 37 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] arbre de décision
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] ensachage
[Termes IGN] entropie
[Termes IGN] image Worldview
[Termes IGN] modèle orienté objet
[Termes IGN] précision de la classification
[Termes IGN] Sarthe (72)Résumé : (Auteur) L'évaluation de la précision des cartes thématiques produites par télédétection est une finalité de tout processus de classification modélisant le paysage. Reposant traditionnellement sur la matrice de confusion, elle peut être complétée par des méthodes alternatives plus à même de prendre en compte le biais relatif à la sélection des échantillons d'apprentissage, ainsi que par l'emploi d'approches représentant spatialement l'incertitude inhérente aux classifications. Une telle démarche est adoptée dans cet article, en évaluant la précision à l'aide des estimateurs du Maximum de Probabilité a Posteriori, puis en déterminant, pour chaque unité de carte, des mesures d'incertitude : l'entropie a quadratique, la divergence de Kullback-Leibler et un indice de concordance qualitatif. Ces traitements sont analysés et comparés selon 3 classifieurs, Random Forest, C5.0 et l'Analyse Discriminante Linéaire et selon 4 stratégies de classification : classifieurs seuls, classifieurs avec procédure de bagging, classifieurs avec procédure d'apprentissage actifs et classifieurs avec procédure d'apprentissage actif et de bagging. Les résultats obtenus soulignent la complémentarité des estimateurs de précision pour mettre en évidence un biais dans l'évaluation de la précision ou dans la détermination des probabilités a posteriori, et justifie la prise en considération des indices d'incertitude comme source d'informations sur la distribution spatiale des erreurs de cartographie. Numéro de notice : A2018-092 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2018.310 Date de publication en ligne : 19/04/2018 En ligne : https://doi.org/10.52638/rfpt.2018.310 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89502
in Revue Française de Photogrammétrie et de Télédétection > n° 216 (février 2018) . - pp 19 - 37[article]PermalinkAn adaptive thresholding multiple classifiers system for remote sensing image classification / Y. Tzeng in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 6 (June 2009)Permalink