Descripteur
Termes IGN > 1- Outils - instruments et méthodes > instrument > véhicule > véhicule électrique
véhicule électrique |
Documents disponibles dans cette catégorie (4)



Etendre la recherche sur niveau(x) vers le bas
An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale / Zhiyan Yi in Computers, Environment and Urban Systems, vol 101 (April 2023)
![]()
[article]
Titre : An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale Type de document : Article/Communication Auteurs : Zhiyan Yi, Auteur ; Bingkun Chen, Auteur ; Xiaoyue Cathy Liu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101949 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chaîne de Markov
[Termes IGN] distribution spatiale
[Termes IGN] équipement collectif
[Termes IGN] modèle orienté agent
[Termes IGN] optimisation spatiale
[Termes IGN] planification urbaine
[Termes IGN] véhicule électrique
[Termes IGN] zone urbaineRésumé : (auteur) As the market penetration of electric vehicles (EVs) increases, the surge of charging demand could potentially overload the power grid and disrupt infrastructure planning. Hence, an efficient deployment strategy of electrical vehicle supply equipment (EVSE) is much needed. This study attempts to address the EVSE problem from a microscopic perspective by formulating the problem in two steps: public charging demand simulation and charging station location optimization. Specifically, we apply agent-based modeling approach to produce high-resolution daily driving profiles within an urban-scale context using MATSim. Subsequently, we perform EV assignment based on socioeconomic attributes to determine EV adopters. Energy consumption model and public charging rule are specified for generating synthetic public charging demand and such demand is validated against real-world public charging records to guarantee the robustness of simulation results. In the second step, we apply a location approach – capacitated maximal coverage location problem (CMCLP) model – to reallocate existing charging stations with the objective of maximizing the coverage of total charging demands generated from the previous step under the budget and load capacity constraints. The entire framework is capable of modeling the spatiotemporal distribution of public charging demand in a bottom-up fashion, and provide practical support for future public EVSE installation. Numéro de notice : A2023-186 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2023.101949 Date de publication en ligne : 15/02/2023 En ligne : https://doi.org/10.1016/j.compenvurbsys.2023.101949 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102960
in Computers, Environment and Urban Systems > vol 101 (April 2023) . - n° 101949[article]A map matching-based method for electric vehicle charging station placement at directional road segment level / Zhoulin Yu in Sustainable Cities and Society, vol 84 (September 2022)
![]()
[article]
Titre : A map matching-based method for electric vehicle charging station placement at directional road segment level Type de document : Article/Communication Auteurs : Zhoulin Yu, Auteur ; Zhouhao Wu, Auteur ; Qihui Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103987 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] appariement de cartes
[Termes IGN] distribution spatiale
[Termes IGN] réseau routier
[Termes IGN] segment de droite
[Termes IGN] station
[Termes IGN] véhicule électrique
[Termes IGN] zone urbaineRésumé : (auteur) This paper proposes a method for electric vehicle charging station (EVCS) placement problem at the directional road segment (DRS) level for large urban road networks, which integrates a multi-criteria decision-making model with a new map matching technique called “segment-wise matching based on MRI”. The charging demand of DRS is estimated based on a novel prediction method which considers the arrival trips and the variation of charging demand for different trip purposes. Traffic attributes, charging demand attributes, and land price are incorporated into the TOPSIS model to determine the optimal EVCS placement. Finally, the proposed method is demonstrated using the road network of Xi'an in China as a case study. The results show the proposed method can be well applied to the EVCS placement problem at the DRS level for large-scale urban road networks. It is found that EVCS installation potentials of road segments approximately follow a normal distribution. The road segments with a high installation potential exhibit regional clustering characteristics due to the level of well-developed land use in the surrounding area. Sensitivity analyses suggest that it is important to include multiple criteria for modeling the EVCS placement problem and that traffic speed and arrival trips are key factors. Numéro de notice : A2022-545 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.103987 Date de publication en ligne : 04/06/2022 En ligne : https://doi.org/10.1016/j.scs.2022.103987 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101119
in Sustainable Cities and Society > vol 84 (September 2022) . - n° 103987[article]Machine learning for the distributed and dynamic management of a fleet of taxis and autonomous shuttles / Tatiana Babicheva (2021)
![]()
Titre : Machine learning for the distributed and dynamic management of a fleet of taxis and autonomous shuttles Titre original : Machine Learning pour la gestion distribuée et dynamique d’une flotte de taxis et navettes autonomes Type de document : Thèse/HDR Auteurs : Tatiana Babicheva, Auteur ; Leïla Kloul, Directeur de thèse ; Dominique Barth, Directeur de thèse Editeur : Bures-sur-Yvette : Université Paris-Saclay Année de publication : 2021 Importance : 190 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Paris-Saclay, InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage par renforcement
[Termes IGN] autopartage
[Termes IGN] calcul d'itinéraire
[Termes IGN] méthode heuristique
[Termes IGN] navigation autonome
[Termes IGN] OpenStreetMap
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trafic routier
[Termes IGN] trafic urbain
[Termes IGN] véhicule électrique
[Termes IGN] ville intelligenteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) In this thesis are investigated methods to manage shared electric autonomous taxi urban systems under online context in which customer demands occur over time, and where vehicles are available for ride-sharing and require electric recharging management. We propose the heuristics based on problem decomposition which include road network repartition and highlighting of subproblems such as charging management, empty vehicle redistribution and dynamic ride-sharing.The set of new methods for empty vehicle redistribution is proposed, such as proactive, meaning to take into account both current demand and anticipated future demand, in contrast to reactive methods, which act based on current demand only.We provide the reinforcement learning in different levels depending on granularity of the system.We propose station-based RL model for small networks and zone-based RL model, where the agents are zones of the city obtained by partitioning, for huge ones. The complete information optimisation is provided in order to analyse the system performance a-posteriori in offline context.The evaluation of the performance of proposed methods is provided in set of road networks of different nature and size. The proposed method provides promising results outperforming the other tested methods and the real data on the taxi system performance in terms of number of satisfied passengers under fixed fleet size. Note de contenu : 1- Introduction
2- State-of-the-art
3- Modelling the electrical aTaxisystem
4- Functional architecture of aTaxi system management
5- Reinforcement learning for aTaxi system optimisation
6- Evaluation scenarii
7- Numerical evaluation of aTaxi systems
8- Conclusion and discussionNuméro de notice : 28591 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de Doctorat : Informatique : Paris-Saclay : 2021 Organisme de stage : Données et Algorithmes pour une ville intelligente et durable (UVSQ) DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03230845/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97968 Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS / Dogus Guler in Annals of GIS, vol 26 n° 2 (April 2020)
![]()
[article]
Titre : Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS Type de document : Article/Communication Auteurs : Dogus Guler, Auteur ; Tahsin Yomralioglu, Auteur Année de publication : 2020 Article en page(s) : pp 169 - 189 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] analyse multicritère
[Termes IGN] approche holistique
[Termes IGN] électricité
[Termes IGN] outil d'aide à la décision
[Termes IGN] pondération
[Termes IGN] processus de hiérarchisation analytique floue
[Termes IGN] station
[Termes IGN] système d'information géographique
[Termes IGN] véhicule électrique
[Termes IGN] zone urbaineRésumé : (auteur) Electric vehicles arouse interest since they not only contribute economies of countries in the context of dependency to oil but also support to more livable and sustainable urban areas. The location selection of electric vehicle charging stations is one of the most vital topics in order to enhance the use of electric vehicles. In this sense, the aim of this paper is to propose an approach that integrates Geographic Information System (GIS) techniques and Multi-Criteria Decision Making (MCDM) methods for finding suitable locations of the electric vehicle charging stations. In this regard, the Analytic Hierarchy Process (AHP) and the Fuzzy Analytic Hierarchy Process (FAHP) methods are used to calculate the weights of criteria. While the two different weights for each criterion are obtained by means of AHP in terms of environmental impact and accessibility, another weight for each criterion is obtained as a means of applying the FAHP. The intersection of three different suitability indexes is determined so as to achieve a holistic, credible result. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to rank the alternative locations. The results show that the proposed approach offers a notable solution to be selected suitable charging station locations. Moreover, policymakers and administrators could benefit from these results in order to make efficient decisions for forward planning and strategies. Numéro de notice : A2020-322 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/19475683.2020.1737226 Date de publication en ligne : 09/03/2020 En ligne : https://doi.org/10.1080/19475683.2020.1737226 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95189
in Annals of GIS > vol 26 n° 2 (April 2020) . - pp 169 - 189[article]