Descripteur
Documents disponibles dans cette catégorie (5)



Etendre la recherche sur niveau(x) vers le bas
Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population / Heng Wan in Computers, Environment and Urban Systems, vol 99 (January 2023)
![]()
[article]
Titre : Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population Type de document : Article/Communication Auteurs : Heng Wan, Auteur ; Jim Yoon, Auteur ; Vivek Srikrishnan, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101899 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] carte thématique
[Termes IGN] densité de population
[Termes IGN] distribution spatiale
[Termes IGN] Etats-Unis
[Termes IGN] indicateur paysager
[Termes IGN] interpolation
[Termes IGN] occupation du sol
[Termes IGN] paysage
[Termes IGN] planification urbaine
[Termes IGN] réduction d'échelleRésumé : (auteur) Population downscaling and interpolation methods are required to produce data which correspond to spatial units used in urban planning, demography, and environmental modeling. Population data are typically aggregated at census enumeration units, which can have arbitrary, temporally-evolving boundaries. Previous approaches to imperviousness-based dasymetric mapping ignore cell-level patterning of imperviousness within a spatial unit of prediction, which potentially serve as a strong indicator of population. Landscape metrics derived from imperviousness data offer a promising approach to capture these patterns. In this study, we incorporate landscape metrics derived from impervious cover percentage maps into intelligent dasymetric mapping to downscale population from census tracts to block groups in four states with varying population densities: Connecticut, South Carolina, West Virginia, and New Mexico. We compare the performance of the landscape metrics-based models against two baseline models in all four states across three different time periods. The results show that intelligent dasymetric mapping using landscape metrics generally outperforms the two baseline models. We further compare the performance of landscape metrics as an ancillary source of information for dasymetric mapping against other traditionally-used datasets (e.g., land use, roads, nighttime lights data) in three states (Connecticut, South Carolina, and New Mexico) in 2000. We find that class area, landscape shape index, and number of patches consistently achieve lower error rates than other ancillary datasets in all the three states. Numéro de notice : A2023-013 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101899 Date de publication en ligne : 02/11/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101899 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102130
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101899[article]Downscaling MODIS spectral bands using deep learning / Rohit Mukherjee in GIScience and remote sensing, vol 58 n° 8 (2021)
![]()
[article]
Titre : Downscaling MODIS spectral bands using deep learning Type de document : Article/Communication Auteurs : Rohit Mukherjee, Auteur ; Desheng Liu, Auteur Année de publication : 2021 Article en page(s) : pp 1300 - 1315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] image à basse résolution
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réduction d'échelle
[Termes IGN] résolution multipleRésumé : (auteur) MODIS sensors are widely used in a broad range of environmental studies, many of which involve joint analysis of multiple MODIS spectral bands acquired at disparate spatial resolutions. To extract land surface information from multi-resolution MODIS spectral bands, existing studies often downscale lower resolution (LR) bands to match the higher resolution (HR) bands based on simple interpolation or more advanced statistical modeling. Statistical downscaling methods rely on the functional relationship between the LR spectral bands and HR spatial information, which may vary across different land surface types, making statistical downscaling methods less robust. In this paper, we propose an alternative approach based on deep learning to downscale 500 m and 1000 m spectral bands of MODIS to 250 m without additional spatial information. We employ a superresolution architecture based on an encoder decoder network. This deep learning-based method uses a custom loss function and a self-attention layer to preserve local and global spatial relationships of the predictions. We compare our approach with a statistical method specifically developed for downscaling MODIS spectral bands, an interpolation method widely used for downscaling multi-resolution spectral bands, and a deep learning superresolution architecture previously used for downscaling satellite imagery. Results show that our deep learning method outperforms on almost all spectral bands both quantitatively and qualitatively. In particular, our deep learning-based method performs very well on the thermal bands due to the larger scale difference between the input and target resolution. This study demonstrates that our proposed deep learning-based downscaling method can maintain the spatial and spectral fidelity of satellite images and contribute to the integration and enhancement of multi-resolution satellite imagery. Numéro de notice : A2021-124 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2021.1984129 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1080/15481603.2021.1984129 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99309
in GIScience and remote sensing > vol 58 n° 8 (2021) . - pp 1300 - 1315[article]Integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI images / Yijie Tang in ISPRS Journal of photogrammetry and remote sensing, vol 180 (October 2021)
![]()
[article]
Titre : Integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI images Type de document : Article/Communication Auteurs : Yijie Tang, Auteur ; Qunming Wang, Auteur ; Xiaohua Tong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 130 - 150 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réduction d'échelle
[Termes IGN] réflectanceRésumé : (auteur) Sentinel-3 is a newly launched satellite implemented by the European Space Agency (ESA) for global observation. The Ocean and Land Colour Imager (OLCI) sensor onboard Sentinel-3 provides 21 band images with a fine spectral resolution and is of great value for ocean, land and atmospheric monitoring. The two platforms (Sentinel-3A and -3B) can provide OLCI images at an almost daily temporal resolution. The coarse spatial resolution of the 21 band OLCI images (i.e., 300 m), however, limits greatly their utility for local, precise monitoring. Sentinel-2, another satellite provided by ESA, carries the Multispectral Imager (MSI) sensor which can supply much finer spatial resolution (e.g., 10 m and 20 m) images. This paper introduces a new fusion framework integrating spatio-temporal-spectral information for downscaling Sentinel-3 OLCI images, which has two parts. Based on bands with similar wavelengths (i.e., bands 2, 3, 4 and 8a for Sentinel-2 and bands Oa4, Oa6, Oa8 and Oa17 for Sentinel-3), the four Sentinel-3 bands are first downscaled to the spatial resolution of Sentinel-2 images by applying spatio-temporal fusion to Sentinel-2 MSI and Sentinel-3 OLCI images. Then, to take full advantage of all 21 available OLCI bands of the Sentinel-3 images, the extended image pair-based spatio-spectral fusion (EIPSSF) method is proposed in this paper to downscale the other 17 bands. EIPSSF is performed based on the new concept of the extended image pair (EIP) and by exploiting existing spatio-temporal fusion approaches. The framework consisting of spatio-temporal and spatio-spectral fusion is entirely general, which provides a practical solution for comprehensive downscaling of Sentinel-3 OLCI images for fine spatial, temporal and spectral resolution monitoring. Numéro de notice : A2021-654 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.012 Date de publication en ligne : 24/08/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98384
in ISPRS Journal of photogrammetry and remote sensing > vol 180 (October 2021) . - pp 130 - 150[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021101 SL Revue Centre de documentation Revues en salle Disponible 081-2021103 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network / Jussi Leinonen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
![]()
[article]
Titre : Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network Type de document : Article/Communication Auteurs : Jussi Leinonen, Auteur ; Daniele Nerini, Auteur ; Alexis Berne, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7211 - 7223 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données météorologiques
[Termes IGN] épaisseur de nuage
[Termes IGN] image à basse résolution
[Termes IGN] image GOES
[Termes IGN] modèle atmosphérique
[Termes IGN] précipitation
[Termes IGN] processus stochastique
[Termes IGN] réduction d'échelle
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal convolutif
[Termes IGN] SuisseRésumé : (auteur) Generative adversarial networks (GANs) have been recently adopted for super-resolution, an application closely related to what is referred to as “downscaling” in the atmospheric sciences: improving the spatial resolution of low-resolution images. The ability of conditional GANs to generate an ensemble of solutions for a given input lends itself naturally to stochastic downscaling, but the stochastic nature of GANs is not usually considered in super-resolution applications. Here, we introduce a recurrent, stochastic super-resolution GAN that can generate ensembles of time-evolving high-resolution atmospheric fields for an input consisting of a low-resolution sequence of images of the same field. We test the GAN using two data sets: one consisting of radar-measured precipitation from Switzerland; the other of cloud optical thickness derived from the Geostationary Earth Observing Satellite 16 (GOES-16). We find that the GAN can generate realistic, temporally consistent super-resolution sequences for both data sets. The statistical properties of the generated ensemble are analyzed using rank statistics, a method adapted from ensemble weather forecasting; these analyses indicate that the GAN produces close to the correct amount of variability in its outputs. As the GAN generator is fully convolutional, it can be applied after training to input images larger than the images used to train it. It is also able to generate time series much longer than the training sequences, as demonstrated by applying the generator to a three-month data set of the precipitation radar data. The source code to our GAN is available at https://github.com/jleinonen/downscaling-rnn-gan. Numéro de notice : A2021-645 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3032790 Date de publication en ligne : 02/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3032790 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98349
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7211 - 7223[article]A new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
![]()
[article]
Titre : A new small area estimation algorithm to balance between statistical precision and scale Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Jean-Pierre Renaud
, Auteur ; Ankit Sagar
, Auteur ; Olivier Bouriaud
, Auteur
Année de publication : 2021 Projets : LUE / Université de Lorraine, DIABOLO / Packalen, Tuula, ARBRE/CHM-era / Jolly, Anne Article en page(s) : n° 102303 Note générale : bibliographie
This research was funded by The French Environmental Management Agency (ADEME), grant number 16-60-C0007. The methods and algorithms for processing photogrammetric data were supported by DIABOLO project from the European Union’s Horizon 2020 research and innovation program under grant agreement No 633464, as well as CHM-ERA project from the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Ankit Sagar received the financial support of the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, through the project Impact DeepSurf.Langues : Anglais (eng) Descripteur : [Termes IGN] arbre BSP
[Termes IGN] capital sur pied
[Termes IGN] données auxiliaires
[Termes IGN] données de terrain
[Termes IGN] estimation bayesienne
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] réduction d'échelle
[Termes IGN] seuillage
[Termes IGN] surface terrière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.
To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.
The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58% and 41% of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50%.
For a target estimation error set to 10%, the algorithm led to a limited number of estimation domains ( The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.Numéro de notice : A2021-067 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2021.102303 Date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1016/j.jag.2021.102303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96992
in International journal of applied Earth observation and geoinformation > vol 97 (May 2021) . - n° 102303[article]