Descripteur
Documents disponibles dans cette catégorie (7)



Etendre la recherche sur niveau(x) vers le bas
Modern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) / Yizi Chen (2023)
![]()
Titre : Modern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) Titre original : Vectorisation et alignement modernes des cartes historiques : Une application à l'Atlas de Paris (1789-1950) Type de document : Thèse/HDR Auteurs : Yizi Chen , Auteur ; Julien Perret
, Directeur de thèse ; Joseph Chazalon, Directeur de thèse ; Clément Mallet
, Directeur de thèse
Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Importance : 124 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] apprentissage profond
[Termes IGN] carte ancienne
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste local
[Termes IGN] extraction automatique
[Termes IGN] jeu de données localisées
[Termes IGN] morphologie mathématique
[Termes IGN] Paris (75)
[Termes IGN] plan de ville
[Termes IGN] reconnaissance de formes
[Termes IGN] vectorisation
[Termes IGN] vision par ordinateurRésumé : (auteur) Les cartes sont une source unique de connaissances depuis des siècles. Ces documents historiques fournissent des informations inestimables pour analyser des transformations spatiales complexes sur des périodes importantes. Cela est particulièrement vrai pour les zones urbaines qui englobent de multiples domaines de recherche imbriqués : humanités, sciences sociales, etc. La complexité des cartes (texte, bruit, artefacts de numérisation, etc.) a entravé la capacité à proposer des approches de vectorisation polyvalentes et efficaces pendant des décennies. Dans cette thèse, nous proposons une solution apprenable, reproductible et réutilisable pour la transformation automatique de cartes raster en objets vectoriels (îlots, rues, rivières), en nous focalisant sur le problème d'extraction de formes closes. Notre approche s'appuie sur la complémentarité des réseaux de neurones convolutifs qui excellent dans et de la morphologie mathématique, qui présente de solides garanties au regard de l'extraction de formes closes tout en étant très sensible au bruit. Afin d'améliorer la robustesse au bruit des filtres convolutifs, nous comparons plusieurs fonctions de coût visant spécifiquement à préserver les propriétés topologiques des résultats, et en proposons de nouvelles. À cette fin, nous introduisons également un nouveau type de couche convolutive (CConv) exploitant le contraste des images, pour explorer les possibilités de telles améliorations à l'aide de transformations architecturales des réseaux. Finalement, nous comparons les différentes approches et architectures qui peuvent être utilisées pour implémenter chaque étape de notre chaîne de traitements, et comment combiner ces dernières de la meilleure façon possible. Grâce à une chaîne de traitement fonctionnelle, nous proposons une nouvelle procédure d'alignement d'images de plans historiques, et commençons à tirer profit de la redondance des données extraites dans des images similaires pour propager des annotations, améliorer la qualité de la vectorisation, et éventuellement détecter des cas d'évolution en vue d'analyse thématique, ou encore l'estimation automatique de la qualité de la vectorisation. Afin d'évaluer la performance des méthodes mentionnées précédemment, nous avons publié un nouveau jeu de données composé d'images de plans historiques annotées. C'est le premier jeu de données en libre accès dédié à la vectorisation de plans historiques. Nous espérons qu'au travers de nos publications, et de la diffusion ouverte et publique de nos résultats, sources et jeux de données, cette recherche pourra être utile à un large éventail d'applications liées aux cartes historiques. Note de contenu : 1- Introduction
2- Pipeline design for historical map vectorization
3- Learning edges through deep neural architectures
4- Topology-aware loss functions
5- Improving model robustness of deep edge detectors
6- Leveraging redundancies of historical maps
7- Conclusion and perspectivesNuméro de notice : 10713 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de doctorat : Sciences géographiques : UGE : 2023 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans En ligne : https://theses.hal.science/tel-04106107 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103264 Prototype-guided multitask adversarial network for cross-domain LiDAR point clouds semantic segmentation / Zhimin Yuan in IEEE Transactions on geoscience and remote sensing, vol 61 n° 1 (January 2023)
![]()
[article]
Titre : Prototype-guided multitask adversarial network for cross-domain LiDAR point clouds semantic segmentation Type de document : Article/Communication Auteurs : Zhimin Yuan, Auteur ; Ming Cheng, Auteur ; Wankang Zeng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 5700613 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] alignement des données
[Termes IGN] apprentissage non-dirigé
[Termes IGN] compression de données
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Unsupervised domain adaptation (UDA) segmentation aims to leverage labeled source data to make accurate predictions on unlabeled target data. The key is to make the segmentation network learn domain-invariant representations. In this work, we propose a prototype-guided multitask adversarial network (PMAN) to achieve this. First, we propose an intensity-aware segmentation network (IAS-Net) that leverages the private intensity information of target data to substantially facilitate feature learning of the target domain. Second, the category-level cross-domain feature alignment strategy is introduced to flee the side effects of global feature alignment. It employs the prototype (class centroid) and includes two essential operations: 1) build an auxiliary nonparametric classifier to evaluate the semantic alignment degree of each point based on the prediction consistency between the main and auxiliary classifiers and 2) introduce two class-conditional point-to-prototype learning objectives for better alignment. One is to explicitly perform category-level feature alignment in a progressive manner, and the other aims to shape the source feature representation to be discriminative. Extensive experiments reveal that our PMAN outperforms state-of-the-art results on two benchmark datasets. Numéro de notice : A2023-118 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2023.3234542 Date de publication en ligne : 05/01/2023 En ligne : https://doi.org/10.1109/TGRS.2023.3234542 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102489
in IEEE Transactions on geoscience and remote sensing > vol 61 n° 1 (January 2023) . - n° 5700613[article]A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas / Hossein Pourazar in Geocarto international, vol 37 n° 23 ([15/10/2022])
![]()
[article]
Titre : A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas Type de document : Article/Communication Auteurs : Hossein Pourazar, Auteur ; Farhad Samadzadegan, Auteur ; Farzaneh Dadrass Javan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 6695 - 6712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotoplan numérique
[Termes IGN] zone urbaineRésumé : (auteur) In this paper, a deep convolutional neural network (CNN) is developed to classify the Unmanned Aerial Vehicle (UAV) derived multispectral imagery and normalized digital surface model (DSM) data in urban areas. For this purpose, a multi-input deep CNN (MIDCNN) architecture is designed using 11 parallel CNNs; 10 deep CNNs to extract the features from all possible triple combinations of spectral bands as well as one deep CNN dedicated to the normalized DSM data. The proposed method is compared with the traditional single-input (SI) and double-input (DI) deep CNN designations and random forest (RF) classifier, and evaluated using two independent test datasets. The results indicate that increasing the CNN layers parallelly augmented the classifier’s generalization and reduced overfitting risk. The overall accuracy and kappa value of the proposed method are 95% and 0.93, respectively, for the first test dataset, and 96% and 0.94, respectively, for the second test data set. Numéro de notice : A2022-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1959655 Date de publication en ligne : 04/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1959655 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101741
in Geocarto international > vol 37 n° 23 [15/10/2022] . - pp 6695 - 6712[article]Representing vector geographic information as a tensor for deep learning based map generalisation / Azelle Courtial (2022)
![]()
Titre : Representing vector geographic information as a tensor for deep learning based map generalisation Type de document : Article/Communication Auteurs : Azelle Courtial , Auteur ; Guillaume Touya
, Auteur ; Xiang Zhang, Auteur
Editeur : AGILE Alliance Année de publication : 2022 Projets : 1-Pas de projet / Conférence : AGILE 2022, 25th international AGILE Conference on Geographic Information Science, Artificial intelligence in the service of geospatial technologies 14/06/2022 17/06/2022 Vilnius Lithuanie OA Proceedings Importance : 8 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] alignement des données
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] bati
[Termes IGN] carte topographique
[Termes IGN] couche
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données vectorielles
[Termes IGN] information sémantique
[Termes IGN] milieu urbain
[Termes IGN] route
[Termes IGN] tenseur
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Recently, many researchers tried to generate (generalised) maps using deep learning, and most of the proposed methods deal with deep neural network architecture choices. Deep learning learns to reproduce examples, so we think that improving the training examples, and especially the representation of the initial geographic information, is the key issue for this problem. Our article extracts some representation issues from a literature review and proposes different ways to represent vector geographic information as a tensor. We propose two kinds of contributions: 1) the representation of information by layers; 2) the representation of additional information. Then, we demonstrate the interest of some of our propositions with experiments that show a visual improvement for the generation of generalised topographic maps in urban areas. Numéro de notice : C2022-024 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : https://agile-giss.copernicus.org/articles/3/index.html Thématique : GEOMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/agile-giss-3-32-2022 En ligne : https://doi.org/10.5194/agile-giss-3-32-2022 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100921 Least squares adjustment with a rank-deficient weight matrix and Its applicability to image/Lidar data processing / Radhika Ravi in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
![]()
[article]
Titre : Least squares adjustment with a rank-deficient weight matrix and Its applicability to image/Lidar data processing Type de document : Article/Communication Auteurs : Radhika Ravi, Auteur ; Ayman Habib, Auteur Année de publication : 2021 Article en page(s) : pp 717 - 733 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] alignement des données
[Termes IGN] chevauchement
[Termes IGN] compensation par moindres carrés
[Termes IGN] données lidar
[Termes IGN] lidar mobile
[Termes IGN] matrice
[Termes IGN] matrice de covariance
[Termes IGN] modèle de Gauss-Helmert
[Termes IGN] modèle de Gauss-Markov
[Termes IGN] modèle mathématique
[Termes IGN] modélisation 3D
[Termes IGN] pondération
[Termes IGN] semis de pointsRésumé : (Auteur) This article proposes a solution to special least squares adjustment (LSA) models with a rank-deficient weight matrix, which are commonly encountered in geomatics. The two sources of rank deficiency in weight matrices are discussed: naturally occurring due to the inherent characteristics of LSA mathematical models and artificially induced to eliminate nuisance parameters from LSA estimation. The physical interpretation of the sources of rank deficiency is demonstrated using a case study to solve the problem of 3D line fitting, which is often encountered in geomatics but has not been addressed fully to date. Finally, some geomatics-related applications—mobile lidar system calibration, point cloud registration, and single-photo resection—are discussed along with respective experimental results, to emphasize the need to assess LSA models and their weight matrices to draw inferences regarding the effective contribution of observations. The discussion and results demonstrate the vast applications of this research in geomatics as well as other engineering domains. Numéro de notice : A2021-675 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00081R3 Date de publication en ligne : 10/01/2021 En ligne : https://doi.org/10.14358/PERS.20-00081R3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98861
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 717 - 733[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible Modeling and Simulation in Engineering, ch. 1. Image-laser fusion for in situ 3D modeling of complex environments: A 4D panoramic-driven approach / Daniela Craciun (2012)
PermalinkAutomatic pyramidal intensity-based laser scan matcher for 3D modeling of large scale unstructured environments / Daniela Craciun (2008)
Permalink