Descripteur
Documents disponibles dans cette catégorie (15)



Etendre la recherche sur niveau(x) vers le bas
Deep learning feature representation for image matching under large viewpoint and viewing direction change / Lin Chen in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)
![]()
[article]
Titre : Deep learning feature representation for image matching under large viewpoint and viewing direction change Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Christian Heipke, Auteur Année de publication : 2022 Article en page(s) : pp 94 -112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image aérienne oblique
[Termes IGN] orientation d'image
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal siamois
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Feature based image matching has been a research focus in photogrammetry and computer vision for decades, as it is the basis for many applications where multi-view geometry is needed. A typical feature based image matching algorithm contains five steps: feature detection, affine shape estimation, orientation assignment, description and descriptor matching. This paper contains innovative work in different steps of feature matching based on convolutional neural networks (CNN). For the affine shape estimation and orientation assignment, the main contribution of this paper is twofold. First, we define a canonical shape and orientation for each feature. As a consequence, instead of the usual Siamese CNN, only single branch CNNs needs to be employed to learn the affine shape and orientation parameters, which turns the related tasks from supervised to self supervised learning problems, removing the need for known matching relationships between features. Second, the affine shape and orientation are solved simultaneously. To the best of our knowledge, this is the first time these two modules are reported to have been successfully trained together. In addition, for the descriptor learning part, a new weak match finder is suggested to better explore the intra-variance of the appearance of matched features. For any input feature patch, a transformed patch that lies far from the input feature patch in descriptor space is defined as a weak match feature. A weak match finder network is proposed to actively find these weak match features; they are subsequently used in the standard descriptor learning framework. The proposed modules are integrated into an inference pipeline to form the proposed feature matching algorithm. The algorithm is evaluated on standard benchmarks and is used to solve for the parameters of image orientation of aerial oblique images. It is shown that deep learning feature based image matching leads to more registered images, more reconstructed 3D points and a more stable block geometry than conventional methods. The code is available at https://github.com/Childhoo/Chen_Matcher.git. Numéro de notice : A2022-502 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.06.003 Date de publication en ligne : 14/06/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.06.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101000
in ISPRS Journal of photogrammetry and remote sensing > vol 190 (August 2022) . - pp 94 -112[article]Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery / Qian Shen in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Qian Shen, Auteur ; Jiru Huang, Auteur ; Min Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 78 - 94 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données qualitatives
[Termes IGN] estimation quantitative
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] jeu de données
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) In the field of remote sensing applications, semantic change detection (SCD) simultaneously identifies changed areas and their change types by jointly conducting bitemporal image classification and change detection. It facilitates change reasoning and provides more application value than binary change detection (BCD), which offers only a binary map of the changed/unchanged areas. In this study, we propose a multitask Siamese network, named the semantic feature-constrained change detection (SFCCD) network, for building change detection in bitemporal high-spatial-resolution (HSR) images. SFCCD conducts feature extraction, semantic segmentation and change detection simultaneously, where change detection and semantic segmentation are the main and auxiliary tasks, respectively. For the segmentation task, ResNet50 is used to conduct image feature extraction, and the extracted semantic features are provided to execute the change detection task via a series of jump connections. For the change detection task, a global channel attention (GCA) module and a multiscale feature fusion (MSFF) module are designed, where high-level features offer training guidance to the low-level feature maps, and multiscale features are fused with multiple convolutions that possess different receptive fields. In bitemporal HSR images with different view angles, high-rise buildings have different directional height displacements, which generally cause serious false alarms for common change detection methods. However, known public building change detection datasets often lack buildings with height displacement. We thus create the Nanjing Dataset (NJDS) and design the aforementioned network structures and modules to target this issue. Experiments for method validation and comparison are conducted on the NJDS and two additional public datasets, i.e., the WHU Building Dataset (WBDS) and Google Dataset (GDS). Ablation experiments on the NJDS show that the joint utilization of the GCA and MSFF modules performs better than several classic modules, including atrous spatial pyramid pooling (ASPP), efficient spatial pyramid (ESP), channel attention block (CAB) and global attention upsampling (GAU) modules, in dealing with building height displacement. Furthermore, SFCCD achieves higher accuracy in terms of the OA, recall, F1-score and mIoU measures than several state-of-the-art change detection methods, including deeply supervised image fusion network (DSIFN), the dual-task constrained deep Siamese convolutional network (DTCDSCN), and multitask U-Net (MTU-Net). Numéro de notice : A2022-412 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.05.001 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.05.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100762
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 78 - 94[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Meta-learning based hyperspectral target detection using siamese network / Yulei Wang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
![]()
[article]
Titre : Meta-learning based hyperspectral target detection using siamese network Type de document : Article/Communication Auteurs : Yulei Wang, Auteur ; Xi Chen, Auteur ; Fengchao Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5527913 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection de cible
[Termes IGN] espace euclidien
[Termes IGN] filtrage numérique d'image
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal siamois
[Termes IGN] tripletRésumé : (auteur) When predicting data for which limited supervised information is available, hyperspectral target detection methods based on deep transfer learning expect that the network will not require considerable retraining to generalize to unfamiliar application contexts. Meta-learning is an effective and practical framework for solving this problem in deep learning. This article proposes a new meta-learning based hyperspectral target detection using Siamese network (MLSN). First, a deep residual convolution feature embedding module is designed to embed spectral vectors into the Euclidean feature space. Then, the triplet loss is used to learn the intraclass similarity and interclass dissimilarity between spectra in embedding feature space by using the known labeled source data on the designed three-channel Siamese network for meta-training. The learned meta-knowledge is updated with the prior target spectrum through a designed two-channel Siamese network to quickly adapt to the new detection task. It should be noted that the parameters and structure of the deep residual convolution embedding modules of each channel in the Siamese network are identical. Finally, the spatial information is combined, and the detection map of the two-channel Siamese network is processed by the guiding image filtering and morphological closing operation, and a final detection result is obtained. Based on the experimental analysis of six real hyperspectral image datasets, the proposed MLSN has shown its excellent comprehensive performance. Numéro de notice : A2022-381 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3169970 Date de publication en ligne : 22/04/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3169970 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100649
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 4 (April 2022) . - n° 5527913[article]Siamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)
![]()
[article]
Titre : Siamese Adversarial Network for image classification of heavy mineral grains Type de document : Article/Communication Auteurs : Huizhen Hao, Auteur ; Zhiwei Jiang, Auteur ; Shiping Ge, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] microscope électronique
[Termes IGN] minéral
[Termes IGN] polarisation croisée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal siamois
[Termes IGN] séparateur à vaste margeRésumé : (auteur) The identification of heavy mineral grains based on microscopic images can significantly reduce the time and economic cost of the identification. There are several deep learning models to realize end-to-end identification of mineral image recently. However, due to the variety and complexity of mineral images, the existing models are difficult to accurately recognize heavy mineral grains in microscopic images. Here we propose the Siamese Adversarial Network (SAN) for image classification of the heavy mineral grains, which is the first time to focus on addressing the domain difference of heavy mineral images from different basins. In more details, we design a Siamese feature encoder to extract features of both the plane-polarized and cross-polarized images as internal representation of heavy mineral grains. The features are reconstructed to discard domain-related information by adversarial training the heavy mineral classifier and domain discriminator. The identification performance of the models under the three mixed domain experiments is consistently higher than the performance under the same domain settings respectively which shows that the model we proposed achieves a great generalization ability on unseen domains. Numéro de notice : A2022-174 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.105016 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.105016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99810
in Computers & geosciences > vol 159 (February 2022) . - n° 105016[article]Effective triplet mining improves training of multi-scale pooled CNN for image retrieval / Federico Vaccaro in Machine Vision and Applications, vol 33 n° 1 (January 2022)
![]()
[article]
Titre : Effective triplet mining improves training of multi-scale pooled CNN for image retrieval Type de document : Article/Communication Auteurs : Federico Vaccaro, Auteur ; Marco Bertini, Auteur ; Tiberio Uricchio, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] agrégation
[Termes IGN] analyse visuelle
[Termes IGN] architecture de réseau
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] réseau neuronal siamois
[Termes IGN] tripletRésumé : (auteur) In this paper, we address the problem of content-based image retrieval (CBIR) by learning images representations based on the activations of a Convolutional Neural Network. We propose an end-to-end trainable network architecture that exploits a novel multi-scale local pooling based on the trainable aggregation layer NetVLAD (Arandjelovic et al in Proceedings of the IEEE conference on computer vision and pattern recognition CVPR, NetVLAD, 2016) and bags of local features obtained by splitting the activations, allowing to reduce the dimensionality of the descriptor and to increase the performance of retrieval. Training is performed using an improved triplet mining procedure that selects samples based on their difficulty to obtain an effective image representation, reducing the risk of overfitting and loss of generalization. Extensive experiments show that our approach, that can be effectively used with different CNN architectures, obtains state-of-the-art results on standard and challenging CBIR datasets. Numéro de notice : A2022-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00138-021-01260-z Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1007/s00138-021-01260-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100153
in Machine Vision and Applications > vol 33 n° 1 (January 2022) . - n° 16[article]Adaptive feature weighted fusion nested U-Net with discrete wavelet transform for change detection of high-resolution remote sensing images / Congcong Wang in Remote sensing, vol 13 n° 24 (December-2 2021)
PermalinkDeep-learning-based burned area mapping using the synergy of Sentinel-1&2 data / Qi Zhang in Remote sensing of environment, vol 264 (October 2021)
PermalinkMultiple convolutional features in Siamese networks for object tracking / Zhenxi Li in Machine Vision and Applications, vol 32 n° 3 (May 2021)
PermalinkRotation-invariant feature learning in VHR optical remote sensing images via nested siamese structure with double center loss / Ruoqiao Jiang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 4 (April 2021)
PermalinkUnsupervised deep representation learning for real-time tracking / Ning Wang in International journal of computer vision, vol 129 n° 2 (February 2021)
PermalinkConvolutional neural networks for change analysis in earth observation images with noisy labels and domain shifts / Rodrigo Caye Daudt (2020)
PermalinkPermalinkRecherche multimodale d'images aériennes multi-date à l'aide d'un réseau siamois / Margarita Khokhlova (2020)
![]()
PermalinkPermalinkPermalink