Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage profond > réseau neuronal artificiel > réseau neuronal de graphes
réseau neuronal de graphesVoir aussi |
Documents disponibles dans cette catégorie (33)



Etendre la recherche sur niveau(x) vers le bas
PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes / Weixiao Gao in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban meshes Type de document : Article/Communication Auteurs : Weixiao Gao, Auteur ; Liangliang Nan, Auteur ; Bas Boom, Auteur ; Hugo Ledoux, Auteur Année de publication : 2023 Article en page(s) : pp 32 - 44 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse de scène 3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] contour
[Termes IGN] maillage
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal de graphes
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured meshes. Based on the observation that object boundaries typically align with the boundaries of planar regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation followed by semantic classification. The over-segmentation step generates an initial set of mesh segments that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we construct a graph that encodes the geometric and photometric features of the segments in its nodes and the multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at https://github.com/WeixiaoGao/PSSNet. Numéro de notice : A2023-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.020 Date de publication en ligne : 02/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102399
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 32 - 44[article]HGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation / Xuefeng Guan in Computers, Environment and Urban Systems, vol 99 (January 2023)
![]()
[article]
Titre : HGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation Type de document : Article/Communication Auteurs : Xuefeng Guan, Auteur ; Weiran Xing, Auteur ; Jingbo Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101900 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] adjacence
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] Queensland (Australie)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone tamponRésumé : (auteur) Since urban growth results from frequent spatial interaction between urban units, adequate representation of spatial interaction is important for urban growth modeling. Among urban growth models, vector-based cellular automata (VCA) excels at expressing spatial interaction with realistic entities, and has accordingly been used extensively in recent studies. However, two issues with VCA modeling still remain: 1) inefficient manual selection of interaction targets with various neighborhood configurations; 2) inaccurate quantification of interaction intensity due to ignorance of spatial heterogeneity in entity interaction. To address these two limitations, this study proposed a novel VCA model with high-order graph attention network (HGAT-VCA). In this model, a graph structure is first built from the topology adjacency relationship between cadastral parcels. In terms of the HGAT components, the original 1st-order parcel neighborhood is extended to high-order to capture the distant dependency, while graph attention is applied to quantify the heterogeneous interaction intensity between parcels. Finally, the conversion probability obtained by HGAT is integrated with VCA to simulate urban land use change. Land use data from the Moreton Bay Region in Queensland, Australia from 2005 to 2009 are selected to verify the proposed HGAT-VCA model. Experimental results illustrate that HGAT-VCA outperforms four classical CA models and achieves the highest simulation accuracy (e.g., the increase of FoM is about 40.7%). In addition, extensive neighborhood configuration experiments show that with HGAT only tuning discrete topological order can generate similar accuracy results compared with the repetitive buffer-based neighborhood configuration, and this can significantly improve the calibration efficiency of VCA models. Numéro de notice : A2023-031 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101900 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101900 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102163
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101900[article]MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction / Du Yin in Geoinformatica, vol 27 n° 1 (January 2023)
![]()
[article]
Titre : MTMGNN: Multi-time multi-graph neural network for metro passenger flow prediction Type de document : Article/Communication Auteurs : Du Yin, Auteur ; Renhe Jiang, Auteur ; Jiewen Deng, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 77 - 105 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] données multitemporelles
[Termes IGN] données spatiotemporelles
[Termes IGN] flux
[Termes IGN] gestion de trafic
[Termes IGN] origine - destination
[Termes IGN] réseau neuronal de graphes
[Termes IGN] système de transport intelligent
[Termes IGN] trafic urbain
[Termes IGN] transport public
[Termes IGN] utilisateurRésumé : (auteur) The passenger flow prediction of the public metro system is a core and critical part of the intelligent transportation system, and is essential for traffic management, metro planning, and emergency safety measures. Most methods chose the recent segment from historical data as input to predict the future traffic flow; however, this would lead to the loss of the inherent characteristic information of the metro passenger flow’s daily morning and evening peak. Therefore, this study aggregates the recent-term and long-term information and use a long-term Gated Convolutional Neural Network (Gated CNN) to extract the temporal feature from the complex historical data. On the other hand, typical models did not consider the different spatial dependencies between different metro stations; this work proposes various adjacent relationships to characterize the degree of association between nodes. In order to extract spatial and temporal features at the same time, the historical data of recent-term and long-term is merged together to extract spatial features through a multi-graph neural network module. By combining Gated CNN and multi-graph module, we propose a multi-time multi-graph neural network named MTMGNN for metro passenger flow prediction. The result of our experiment on real-world datasets shows that our model MTMGNN is better than all state-of-art methods. Numéro de notice : A2023-113 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s10707-022-00466-1 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.1007/s10707-022-00466-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102478
in Geoinformatica > vol 27 n° 1 (January 2023) . - pp 77 - 105[article]Semantic segmentation of bridge components and road infrastructure from mobile LiDAR data / Yi-Chun Lin in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
![]()
[article]
Titre : Semantic segmentation of bridge components and road infrastructure from mobile LiDAR data Type de document : Article/Communication Auteurs : Yi-Chun Lin, Auteur ; Ayman Habib, Auteur Année de publication : 2022 Article en page(s) : n° 100023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] autoroute
[Termes IGN] couplage GNSS-INS
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lidar mobile
[Termes IGN] pont
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Emerging mobile LiDAR mapping systems exhibit great potential as an alternative for mapping urban environments. Such systems can acquire high-quality, dense point clouds that capture detailed information over an area of interest through efficient field surveys. However, automatically recognizing and semantically segmenting different components from the point clouds with efficiency and high accuracy remains a challenge. Towards this end, this study proposes a semantic segmentation framework to simultaneously classify bridge components and road infrastructure using mobile LiDAR point clouds while providing the following contributions: 1) a deep learning approach exploiting graph convolutions is adopted for point cloud semantic segmentation; 2) cross-labeling and transfer learning techniques are developed to reduce the need for manual annotation; and 3) geometric quality control strategies are proposed to refine the semantic segmentation results. The proposed framework is evaluated using data from two mobile mapping systems along an interstate highway with 27 highway bridges. With the help of the proposed cross-labeling and transfer learning strategies, the deep learning model achieves an overall accuracy of 84% using limited training data. Moreover, the effectiveness of the proposed framework is verified through test covering approximately 42 miles along the interstate highway, where substantial improvement after quality control can be observed. Numéro de notice : A2022-814 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1016/j.ophoto.2022.100023 Date de publication en ligne : 24/10/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101975
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100023[article]Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation / Haowei Zeng in International journal of geographical information science IJGIS, vol 36 n° 11 (November 2022)
![]()
[article]
Titre : Graph neural networks with constraints of environmental consistency for landslide susceptibility evaluation Type de document : Article/Communication Auteurs : Haowei Zeng, Auteur ; Qing Zhu, Auteur ; Yulin Ding, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] cohérence des données
[Termes IGN] effondrement de terrain
[Termes IGN] prédiction
[Termes IGN] programmation par contraintes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] vulnérabilitéRésumé : (auteur) In complex and heterogeneous geoenvironments, landslides exhibit varying features in different environments, and data in landslide inventories are imbalanced. Existing data-driven landslide susceptibility evaluation (LSE) methods overlook environmental heterogeneity and cannot reliably predict regions with few samples. Alternatively, global random negative sampling strategies may produce imbalanced positive and negative samples in some environments, contributing to inaccurate predictions. This article proposes a graph neural network (GNN) constrained by environmental consistency (GNN-EC) to overcome these problems. The GNN-EC consists of graphs with nodes, and edges. A graph represents the environmental relationships in the study area. Nodes are geographic units delineated from terrain polygon approximation. Edges capture the relationships between node-pairs. Additionally, the weights of edges reflect the similarity between two node environments. A GNN aggregates node information in the graph for LSE. Our experiment showed that the proposed method outperformed the common machine learning methods: increasing prediction accuracy by approximately 7, 5–6 and 3–4% compared to the artificial neural network (ANN), the support vector machine (SVM) and the random forest (RF), respectively. Moreover, our method can maintain high prediction accuracy, even with a small training set. Numéro de notice : A2022-626 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103819 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103819 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101396
in International journal of geographical information science IJGIS > vol 36 n° 11 (November 2022)[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022111 SL Revue Centre de documentation Revues en salle Disponible Application of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
PermalinkA relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
PermalinkSpatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions / Di Zhu in Geoinformatica, vol 26 n° 4 (October 2022)
PermalinkSpatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding / Faxi Yuan in Computers, Environment and Urban Systems, vol 97 (October 2022)
PermalinkLocation-aware neural graph collaborative filtering / Shengwen Li in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
PermalinkA framework for urban land use classification by integrating the spatial context of points of interest and graph convolutional neural network method / Yongyang Xu in Computers, Environment and Urban Systems, vol 95 (July 2022)
PermalinkModeling human–human interaction with attention-based high-order GCN for trajectory prediction / Yanyan Fang in The Visual Computer, vol 38 n° 7 (July 2022)
PermalinkBeyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification / Yongqiang Mao in ISPRS Journal of photogrammetry and remote sensing, vol 188 (June 2022)
PermalinkDetecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
PermalinkDeep generative model for spatial–spectral unmixing with multiple endmember priors / Shuaikai Shi in IEEE Transactions on geoscience and remote sensing, vol 60 n° 4 (April 2022)
Permalink