Descripteur
Termes IGN > informatique > intelligence artificielle > apprentissage automatique > apprentissage non-dirigé > réseau antagoniste génératif
réseau antagoniste génératif |
Documents disponibles dans cette catégorie (30)



Etendre la recherche sur niveau(x) vers le bas
GANmapper: geographical data translation / Abraham Noah Wu in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
![]()
[article]
Titre : GANmapper: geographical data translation Type de document : Article/Communication Auteurs : Abraham Noah Wu, Auteur ; Filip Biljecki, Auteur Année de publication : 2022 Article en page(s) : pp 1394 - 1422 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie
[Termes IGN] apprentissage automatique
[Termes IGN] bâtiment
[Termes IGN] distance de Fréchet
[Termes IGN] empreinte
[Termes IGN] morphologie urbaine
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] texture d'imageRésumé : (auteur) We present a new method to create spatial data using a generative adversarial network (GAN). Our contribution uses coarse and widely available geospatial data to create maps of less available features at the finer scale in the built environment, bypassing their traditional acquisition techniques (e.g. satellite imagery or land surveying). In the work, we employ land use data and road networks as input to generate building footprints and conduct experiments in 9 cities around the world. The method, which we implement in a tool we release openly, enables the translation of one geospatial dataset to another with high fidelity and morphological accuracy. It may be especially useful in locations missing detailed and high-resolution data and those that are mapped with uncertain or heterogeneous quality, such as much of OpenStreetMap. The quality of the results is influenced by the urban form and scale. In most cases, the experiments suggest promising performance as the method tends to truthfully indicate the locations, amount, and shape of buildings. The work has the potential to support several applications, such as energy, climate, and urban morphology studies in areas previously lacking required data or inpainting geospatial data in regions with incomplete data. Numéro de notice : A2022-493 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2041643 Date de publication en ligne : 08/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2041643 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100975
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1394 - 1422[article]Adversarial defenses for object detectors based on Gabor convolutional layers / Abdollah Amirkhani in The Visual Computer, vol 38 n° 6 (June 2022)
![]()
[article]
Titre : Adversarial defenses for object detectors based on Gabor convolutional layers Type de document : Article/Communication Auteurs : Abdollah Amirkhani, Auteur ; Mohammad Karimi, Auteur Année de publication : 2022 Article en page(s) : pp 1929 - 1944 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] filtre de Gabor
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Despite their many advantages and positive features, the deep neural networks are extremely vulnerable against adversarial attacks. This drawback has substantially reduced the adversarial accuracy of the visual object detectors. To make these object detectors robust to adversarial attacks, a new Gabor filter-based method has been proposed in this paper. This method has then been applied on the YOLOv3 with different backbones, the SSD with different input sizes and on the FRCNN; and thus, six robust object detector models have been presented. In order to evaluate the efficacy of the models, they have been subjected to adversarial training via three types of targeted attacks (TOG-fabrication, TOG-vanishing, and TOG-mislabeling) and three types of untargeted random attacks (DAG, RAP, and UEA). The best average accuracy (49.6%) was achieved by the YOLOv3-d model, and for the PASCAL VOC dataset. This is far superior to the best performance and accuracy and obtained in previous works (25.4%). Empirical results show that, while the presented approach improves the adversarial accuracy of the object detector models, it does not affect the performance of these models on clean data. Numéro de notice : A2022-382 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02256-6 Date de publication en ligne : 24/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02256-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100651
in The Visual Computer > vol 38 n° 6 (June 2022) . - pp 1929 - 1944[article]A GAN-based approach toward architectural line drawing colorization prototyping / Qian (Chayn) Sun in The Visual Computer, vol 38 n° 4 (April 2022)
![]()
[article]
Titre : A GAN-based approach toward architectural line drawing colorization prototyping Type de document : Article/Communication Auteurs : Qian (Chayn) Sun, Auteur ; Yan Chen, Auteur ; Wenyuan Tao, Auteur ; Han Jiang, Auteur ; Mu Zhang, Auteur ; Kan Chen, Auteur ; Marius Erdt, Auteur Année de publication : 2022 Article en page(s) : pp 1283 - 1300 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] architecture
[Termes IGN] bâtiment
[Termes IGN] couleur (variable spectrale)
[Termes IGN] prototype
[Termes IGN] réseau antagoniste génératif
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Line drawing with colorization is a popular art format and tool for architectural illustration. The goal of this research is toward generating a high-quality and natural-looking colorization based on an architectural line drawing. This paper presents a new Generative Adversarial Network (GAN)-based method, named ArchGANs, including ArchColGAN and ArchShdGAN. ArchColGAN is a GAN-based line-feature-aware network for stylized colorization generation. ArchShdGAN is a lighting effects generation network, from which the building depiction in 3D can benefit. In particular, ArchColGAN is able to maintain the important line features and the correlation property of building parts as well as reduce the uneven colorization caused by sparse lines. Moreover, we proposed a color enhancement method to further improve ArchColGAN. Besides the single line drawing images, we also extend our method to handle line drawing image sequences and achieve rotation animation. Experiments and studies demonstrate the effectiveness and usefulness of our proposed method for colorization prototyping. Numéro de notice : A2022-154 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s00371-021-02219-x Date de publication en ligne : 23/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02219-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100292
in The Visual Computer > vol 38 n° 4 (April 2022) . - pp 1283 - 1300[article]PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)
![]()
[article]
Titre : PolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Scott Hensley, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 123 - 139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse discriminante
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] bande L
[Termes IGN] données lidar
[Termes IGN] forêt boréale
[Termes IGN] forêt tropicale
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur de la végétation
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] polarimétrie radar
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] semis de pointsRésumé : (auteur) This paper describes a deep-learning-based unsupervised forest height estimation method based on the synergy of the high-resolution L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and low-resolution large-footprint full-waveform Light Detection and Ranging (LiDAR) data. Unlike traditional PolInSAR-based methods, the proposed method reformulates the forest height inversion as a pan-sharpening process between the low-resolution LiDAR height and the high-resolution PolSAR and PolInSAR features. A tailored Generative Adversarial Network (GAN) called PolGAN with one generator and dual (coherence and spatial) discriminators is proposed to this end, where a progressive pan-sharpening strategy underpins the generator to overcome the significant difference between spatial resolutions of LiDAR and SAR-related inputs. Forest height estimates with high spatial resolution and vertical accuracy are generated through a continuous generative and adversarial process. UAVSAR PolInSAR and LVIS LiDAR data collected over tropical and boreal forest sites are used for experiments. Ablation study is conducted over the boreal site evidencing the superiority of the progressive generator with dual discriminators employed in PolGAN (RMSE: 1.21 m) in comparison with the standard generator with dual discriminators (RMSE: 2.43 m) and the progressive generator with a single coherence (RMSE: 2.74 m) or spatial discriminator (RMSE: 5.87 m). Besides that, by reducing the dependency on theoretical models and utilizing the shape, texture, and spatial information embedded in the high-spatial-resolution features, the PolGAN method achieves an RMSE of 2.37 m over the tropical forest site, which is much more accurate than the traditional PolInSAR-based Kapok method (RMSE: 8.02 m). Numéro de notice : A2022-195 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.02.008 Date de publication en ligne : 17/02/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.02.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99962
in ISPRS Journal of photogrammetry and remote sensing > vol 186 (April 2022) . - pp 123 - 139[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022041 SL Revue Centre de documentation Revues en salle Disponible 081-2022043 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2022042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network / Chen Chen in Remote sensing of environment, vol 270 (March 2022)
![]()
[article]
Titre : Aboveground biomass of salt-marsh vegetation in coastal wetlands: Sample expansion of in situ hyperspectral and Sentinel-2 data using a generative adversarial network Type de document : Article/Communication Auteurs : Chen Chen, Auteur ; Yi Ma, Auteur ; Guangbo Ren, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112885 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte thématique
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral
[Termes IGN] marais salant
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Coastal wetlands are main components of the “blue carbon” ecosystems in coastal zones. Salt-marsh biomass is especially important regarding climate-change mitigation. Generating high precision biomass maps for evaluating the ecological functions of coastal wetlands is essential; however, conducting accurate biomass inversions with limited in situ observations from coastal wetlands is challenging. We propose a generative adversarial network with a constrained factor model (GAN-CF) for expanding limited in situ salt-marsh biomass observations. We used Sentinel-2 images and a deep belief network based on the conjugate gradient method (CG-DBN) for obtaining land-cover maps and the salt-marsh distribution (species: Phragmites australis, Suaeda glauca, Spartina alterniflora, and mixed species dominated by Tamarix chinensis) in the study area. This study bridges in situ hyperspectral and Sentinel-2 multispectral data by a satellite-band equivalent conversion model. The biomass and multispectral data derived from Sentinel-2 were used as input for the proposed GAN-CF model, which produced and constrained the generated samples based on the features (i.e., spectra, vegetation index, and biomass) of the in situ observations. Aboveground biomass (AGB) maps at 10-m spatial resolution were produced by constructing multiple linear regression models (MLRMs) based on the generated samples of each salt-marsh type using Sentinel-2 images. The quantity and richness of the generated samples improved the AGB estimations in the study area. The inversion accuracy of S. alterniflora was significantly improved (RMSE = 3.71 Mg/ha); the estimated AGB was strongly related to the in situ observations (R = 0.923). The estimated AGB was validated using in situ observations. The total amount of salt-marsh AGB in the study area in 2019 was estimated at 2.36 × 105 Mg, with 7.95 Mg/ha average. The salt-marsh biomass in decreasing order was as follows: P. australis (12.7 Mg/ha) > S. alterniflora (11.5 Mg/ha) > mixed species (8.97 Mg/ha) > S. glauca (2.18 Mg/ha). The salt-marsh area in decreasing order was as follows: S. glauca (10,410 ha) > P. australis (7320 ha) > mixed species (6740 ha) > S. alterniflora (5240 ha). By a feasibility analysis we estimated the biomass based on the Sentinel-2 data covering the Yellow River delta wetland in May, July, and September 2019 and the Jiaozhou Bay wetland in September 2019 by using the generated samples. The generated samples based on the 2013–2019 in situ observations constitute a salt-marsh biomass database, which can be useful for quantifying the regional carbon storage and ecological restoration monitoring. Numéro de notice : A2022-128 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112885 Date de publication en ligne : 07/01/2022 En ligne : https://doi.org/10.1016/j.rse.2021.112885 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99710
in Remote sensing of environment > vol 270 (March 2022) . - n° 112885[article]Building footprint extraction in Yangon city from monocular optical satellite image using deep learning / Hein Thura Aung in Geocarto international, vol 37 n° 3 ([01/03/2022])
PermalinkNeural map style transfer exploration with GANs / Sidonie Christophe in International journal of cartography, vol 8 n° 1 (March 2022)
PermalinkSiamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)
PermalinkApprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques / Jean-Yves Franceschi (2022)
PermalinkDeep image translation with an affinity-based change prior for unsupervised multimodal change detection / Luigi Tommaso Luppino in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
PermalinkSelf-attention and generative adversarial networks for algae monitoring / Nhut Hai Huynh in European journal of remote sensing, vol 55 n° 1 (January 2022)
PermalinkUnsupervised generative models for data analysis and explainable artificial intelligence / Mohanad Abukmeil (2022)
PermalinkA deep translation (GAN) based change detection network for optical and SAR remote sensing images / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
PermalinkStochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network / Jussi Leinonen in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
PermalinkUnsupervised denoising for satellite imagery using wavelet directional cycleGAN / Shaoyang Kong in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
Permalink