Descripteur
Termes IGN > mathématiques > analyse mathématique > topologie > contrainte topologique
contrainte topologiqueVoir aussi |
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Clustering with implicit constraints: A novel approach to housing market segmentation / Xiaoqi Zhang in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Clustering with implicit constraints: A novel approach to housing market segmentation Type de document : Article/Communication Auteurs : Xiaoqi Zhang, Auteur ; Yanqiao Zheng, Auteur ; Qiong Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 585 - 608 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme glouton
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par nuées dynamiques
[Termes IGN] contrainte topologique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] logement
[Termes IGN] marché foncier
[Termes IGN] programmation par contraintes
[Termes IGN] segmentation
[Termes IGN] structure spatiale
[Termes IGN] zone urbaineRésumé : (auteur) Constrained clustering has been widely studied and outperforms both the traditional unsupervised clustering and experience-oriented approaches. However, the existing literature on constrained clustering concentrates on spatially explicit constraints, while many constraints in housing market studies are implicit. Ignoring the implicit constraints will result in unreliable clustering results. This article develops a novel framework for constrained clustering, which takes implicit constraints into account. Specifically, the research extends the classical greedy searching algorithm by adding one back-and-forth searching step, efficiently coping with the order sensitivity. Via evaluation on both synthetic and real data sets, it turns out that the proposed algorithm outperforms existing algorithms, even when only the traditional pairwise constraints are provided. In an application to a concrete housing market segmentation problem, the proposed algorithm shows its power to accommodate user-specified homogeneity criteria to extract hidden information on the underlying urban spatial structure. Numéro de notice : A2022-362 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12878 Date de publication en ligne : 26/12/2021 En ligne : https://doi.org/10.1111/tgis.12878 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100581
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 585 - 608[article]A robust nonrigid point set registration framework based on global and intrinsic topological constraints / Guiqiang Yang in The Visual Computer, vol 38 n° 2 (February 2022)
[article]
Titre : A robust nonrigid point set registration framework based on global and intrinsic topological constraints Type de document : Article/Communication Auteurs : Guiqiang Yang, Auteur ; Rui Li, Auteur ; Yujun Liu, Auteur ; Ji Wang, Auteur Année de publication : 2022 Article en page(s) : pp 603 - 623 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] contrainte géométrique
[Termes IGN] contrainte topologique
[Termes IGN] descripteur local
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] méthode robuste
[Termes IGN] processus gaussien
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) The problem of registering nonrigid point sets, with the aim of estimating the correspondences and learning the transformation between two given sets of points, often arises in computer vision tasks. This paper proposes a novel method for performing nonrigid point set registration on data with various types of degradation, in which the registration problem is formulated as a Gaussian mixture model (GMM)-based density estimation problem. Specifically, two complementary constraints are jointly considered for optimization in a GMM probabilistic framework. The first is a thin-plate spline-based regularization constraint that maintains global spatial motion consistency, and the second is a spectral graph-based regularization constraint that preserves the intrinsic structure of a point set. Moreover, the correspondences and the transformation are alternately optimized using the expectation maximization algorithm to obtain a closed-form solution. We first utilize local descriptors to construct the initial correspondences and then estimate the underlying transformation under the GMM-based framework. Experimental results on contour images and real images show the effectiveness and robustness of the proposed method. Numéro de notice : A2022-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-020-02037-7 Date de publication en ligne : 21/02/2022 En ligne : https://doi.org/10.1007/s00371-020-02037-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100040
in The Visual Computer > vol 38 n° 2 (February 2022) . - pp 603 - 623[article]