alerte-lasergrammétrie




Étude des outils permettant la classification d’un nuage de points LiDAR aérien et optimisation de la chaîne de traitement dans le cadre du programme national du LiDAR HD / Evan samzun in XYZ, n° 179 (juin 2024)
[article]
Titre : Étude des outils permettant la classification d’un nuage de points LiDAR aérien et optimisation de la chaîne de traitement dans le cadre du programme national du LiDAR HD Type de document : Article/Communication Auteurs : Evan samzun, Auteur Année de publication : 2024 Article en page(s) : pp. 35 - 42 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification
[Termes IGN] image aérienne
[Termes IGN] intelligence artificielle
[Termes IGN] Lidar
[Termes IGN] semis de pointsRésumé : Ce travail présente une étude portant sur la classification de nuages de points issus d’une acquisition aérienne, en se concentrant sur les données acquises dans le cadre du projet national LiDAR HD. Il réalise une analyse critique des outils proposés par Terrascan et des méthodes pa- ramétriques qui offrent un bon rapport temps/qualité, mais il subsiste des confusions qui demandent un temps de correction conséquent. De plus, les outils Terrascan sont limités à la classification du sol, des bâtiments et d’une partie de la végétation. Il n’est pas proposé de méthodes efficaces pour classifier des éléments de la classe du sursol pérenne, comme les pylônes électriques ou les éoliennes notamment. Pour y remédier, une autre méthode innovante, basée sur les descripteurs 3D est proposée. Cette méthode offre une meilleure détection des bâtiments et permet, en outre, de classifier des éléments du sursol pérenne. Enfin, il est étudié les synergies entre les différents outils testés. Puis les performances d’une IA sont introduites afin de discuter de l’avenir de la classification des nuages de points aériens. Numéro de notice : A2024-17902 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtSansCL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103658
in XYZ > n° 179 (juin 2024) . - pp. 35 - 42[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2024021 RAB Revue Centre de documentation En réserve L003 Exclu du prêt Combination of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Heritage Building Information Modeling: A Case Study of Tarsus St. Paul Church / Şafak Fidan in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 12 (December 2023)
![]()
[article]
Titre : Combination of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry for Heritage Building Information Modeling: A Case Study of Tarsus St. Paul Church Type de document : Article/Communication Auteurs : Şafak Fidan, Auteur ; Ulvi Ali, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 753 - 760 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] église
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique
[Termes IGN] patrimoine archéologique
[Termes IGN] patrimoine immobilierRésumé : (auteur) Cultural heritage building information modeling (HBIM) is an emerging process allowing us to reconstruct built heritage virtually. The data of a digitally documented cultural heritage building offers significant advantages as it is accessible and modifiable by all professionals involved in the same or different projects. The most important factor affecting the accuracy and precision of the HBIM model is the ability to collect complete and accurate information about the physical structure. Combining terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) photogrammetry point clouds is one of the most efficient ways to capture accurate digital data on the building. This study provides the foundation for creating an HBIM model for cultural heritage the coupling of spatial data with TLS and UAV. This paper aims to generate synergy between TLS and UAV point cloud data and ensure that the spatial database contains sufficient data to model historical objects with HBIM tendencies. Numéro de notice : A2023-238 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.23-00031R2 En ligne : https://doi.org/10.14358/PERS.23-00031R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103599
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 12 (December 2023) . - pp 753 - 760[article]Detailed cultural heritage recording produced with traditional methods and laser scanning / Ljubo Lah in Geodetski vestnik, vol 67 n° 4 (December 2023)
![]()
[article]
Titre : Detailed cultural heritage recording produced with traditional methods and laser scanning Type de document : Article/Communication Auteurs : Ljubo Lah, Auteur ; Alain Guerreau, Auteur ; Mojca K. Fras, Auteur ; Tilen Urbančič, Auteur Année de publication : 2023 Article en page(s) : pp 442 - 458 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de données
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] église
[Termes IGN] matrice orthogonale
[Termes IGN] patrimoine culturel
[Termes IGN] topométrie de précisionRésumé : (auteur) Traditional measurement methods are still widely used for recording cultural heritage objects. On the other hand, geodetic surveying and modern technologies such as 3D laser scanning can provide more accurate, geometrically consistent and extremely detailed data that can be used as a basis for detailed vector maps or 3D models. The main aim of our research was to investigate the complementary approach, using both traditional and modern methods, in order to produce detailed vector maps of the Romanesque church of St. Martin in Chapaize, France, which are essential for further unveiling its historic development. Geometrically, this church is rather extensive and has many irregularities in its shape. Our approach to the documentation process is presented and evaluated in this paper. We applied the Procrustes analysis for the ground floor map, which gave us an objective accuracy assessment. Point clouds of the bell tower acquired by two different laser instruments have also been compared. Numéro de notice : A2023-240 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.15292/geodetski-vestnik.2023.04.442-458 Date de publication en ligne : 01/12/2023 En ligne : https://dx.doi.org/10.15292/geodetski-vestnik.2023.04.442-458 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103603
in Geodetski vestnik > vol 67 n° 4 (December 2023) . - pp 442 - 458[article]A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning / Wuyong Tao in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 11 (November 2023)
![]()
[article]
Titre : A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning Type de document : Article/Communication Auteurs : Wuyong Tao, Auteur ; Dong Xu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 703 - 712 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] semis de pointsRésumé : (auteur) Correspondence selection is an indispensable process in point cloud registration. The success of point cloud registration largely depends on a good correspondence selection method. For this purpose, a novel correspondence selection method is proposed in this paper. First, two geometric constraints, one of which is proposed in this paper, are used to compute the compatibility score between two correspondences. Then, the feature vectors of the correspondences are constructed according to the compatibility scores between the correspondence and others. A support vector machine classifier is trained to classify the correct and incorrect correspondences by using the feature vectors. The experimental results demonstrate that our method can choose the right correspondences well and get high precision and F-score performance. Also, our method has the best robustness to noise, pointdensity variation, and partial overlap compared to the other methods. Numéro de notice : A2023-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.23-00046R2 En ligne : https://doi.org/10.14358/PERS.23-00046R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103597
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 11 (November 2023) . - pp 703 - 712[article]Integrating topographic knowledge into point cloud simplification for terrain modelling / Jun Chen in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
![]()
[article]
Titre : Integrating topographic knowledge into point cloud simplification for terrain modelling Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Liyang Xiong, Auteur ; Bowen Yin, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 988 - 1008 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données topographiques
[Termes IGN] lissage de données
[Termes IGN] modèle numérique de surface
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Terrain models are widely used to depict the shape of the Earth’s surface. With the development of photogrammetric methods, point cloud data have become one of the most popular data sources for terrain modelling. However, the obtained point clouds are of high density, which often increases redundancy rather than improving accuracy. Therefore, point cloud simplification should be a core component of terrain modelling. This paper proposes a point cloud simplification method by integrating topographic knowledge into terrain modelling (TKPCS). The method contains two steps: (1) topographic knowledge recognition and construction and (2) point cloud simplification using this topographic knowledge for terrain modelling. The proposed approach is benchmarked against improved versions of existing methods to validate its capability and accuracy in digital elevation model construction and terrain derivative extraction. The results show that the simplified points of the TKPCS method can generate finer resolution terrain models with higher accuracy and greater information entropy. The good performance of the TKPCS method is also stable at different scales. This work endeavours to transform perceptive topographic knowledge into a process of point cloud simplification and can benefit future research related to terrain modelling. Numéro de notice : A2023-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2023.2180801 Date de publication en ligne : 28/02/2023 En ligne : https://doi.org/10.1080/13658816.2023.2180801 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103138
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 988 - 1008[article]La cartographie du relief : Une gageure technique et des solutions / Laurent Polidori in Géomètre, n° 2212 (avril 2023)
PermalinkImpacts of forest management on stand and landscape-level microclimate heterogeneity of European beech forests / Joscha H. Menge in Landscape ecology, vol 38 n° 4 (April 2023)
PermalinkPoint cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms / Ningli Xu in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 8 (April 2023)
PermalinkAnalyse des performances de levers LiDAR via l’iPad Pro en vue de la réalisation de plans d’intérieurs et de maquettes numériques de bâtiments / Pauline Chardon in XYZ, n° 174 (mars 2023)
PermalinkMulti-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density / Grégoire Vincent in Remote sensing of environment, vol 286 (March 2023)
PermalinkPoint cloud data processing optimization in spectral and spatial dimensions based on multispectral Lidar for urban single-wood extraction / Shuo Shi in ISPRS International journal of geo-information, vol 12 n° 3 (March 2023)
PermalinkProgramme LiDAR HD : vers une nouvelle cartographie 3D du territoire / Terry Moreau in XYZ, n° 174 (mars 2023)
PermalinkSiamese KPConv: 3D multiple change detection from raw point clouds using deep learning / Iris de Gelis in ISPRS Journal of photogrammetry and remote sensing, vol 197 (March 2023)
PermalinkValidation of Island 3D-mapping based on UAV spatial point cloud optimization: a case study in Dongluo Island of China / Jian Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 3 (March 2023)
PermalinkPermalink