Détail de l'indexation
THESE : Thèses et HDR |
Ouvrages de la bibliothèque en indexation THESE (685)


Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques / Jean-Yves Franceschi (2022)
![]()
Titre : Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques Type de document : Thèse/HDR Auteurs : Jean-Yves Franceschi, Auteur ; Sylvain Lamprier, Directeur de thèse ; Patrick Gallinari, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2022 Importance : 304 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse soutenue pour obtenir le grade de Docteur en Informatique de Sorbonne UniversitéLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] données spatiotemporelles
[Termes IGN] équation différentielle
[Termes IGN] processus stochastique
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] système dynamiqueIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L'essor de l'apprentissage profond trouve notamment sa source dans les avancées scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles génératifs. Dans leur grande majorité, ces progrès ont cependant été obtenus sur des données textuelles et visuelles statiques, les données temporelles demeurant un défi pour ces méthodes. Compte tenu de leur importance pour l'automatisation croissante de multiples tâches, de plus en plus de travaux en apprentissage automatique s'intéressent aux problématiques d'évolution temporelle. Dans cette thèse, nous étudions ainsi plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de neurones profonds pour l'apprentissage non supervisé de représentations et de modèles génératifs. Premièrement, nous présentons une méthode générale d'apprentissage de représentations non supervisée pour les séries temporelles prenant en compte des besoins pratiques d'efficacité et de flexibilité. Dans un second temps, nous nous intéressons à l'apprentissage pour les séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes physiques. En les modélisant par des équations différentielles paramétrisées par des réseaux de neurones, nous montrons la corrélation entre la découverte de représentations pertinentes d'un côté, et de l'autre la fabrique de modèles prédictifs performants sur ces données. Enfin, nous analysons plus généralement dans une troisième partie les populaires réseaux antagonistes génératifs dont nous décrivons la dynamique d'apprentissage par des équations différentielles, nous permettant d'améliorer la compréhension de leur fonctionnement. Note de contenu : 1- Motivation
2- Time series representation learning
3- State-space predictive models for spatiotemporal data
4- Analysis of GANs’ training dynamics
5- ConclusionNuméro de notice : 60736 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Paris : 2022 DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03591720 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100472
Titre : Deep learning for radar data exploitation of autonomous vehicle Type de document : Thèse/HDR Auteurs : Arthur Ouaknine, Auteur ; Florence Tupin, Directeur de thèse ; Patrick Pérez, Directeur de thèse ; Alasdair Newson, Directeur de thèse Editeur : Paris : Institut Polytechnique de Paris Année de publication : 2022 Importance : 195 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l’Institut Polytechnique de Paris, Spécialité Signal, Images, Automatique et robotiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données radar
[Termes IGN] fusion de données multisource
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] véhicule sans piloteIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) La conduite autonome exige une compréhension détaillée de scènes de conduite complexes. La redondance et la complémentarité des capteurs du véhicule permettent une compréhension précise et robuste de l'environnement, augmentant ainsi le niveau de performance et de sécurité. Cette thèse se concentre sur le RADAR automobile, qui est un capteur actif à faible coût mesurant les propriétés des objets environnants, y compris leur vitesse relative, et qui a l'avantage de ne pas être affecté par des conditions météorologiques défavorables.Avec les progrès rapides de l'apprentissage profond et la disponibilité d'ensembles de données publiques sur la conduite, la capacité de perception des systèmes de conduite basés sur la vision (par exemple, la détection d'objets ou la prédiction de trajectoire) s'est considérablement améliorée. Le capteur RADAR est rarement utilisé pour la compréhension de scène en raison de sa faible résolution angulaire, de la taille, du bruit et de la complexité des données brutes RADAR ainsi que du manque d'ensembles de données disponibles. Cette thèse propose une étude approfondie de la compréhension de scènes RADAR, de la construction d'un jeu de données annotées à la conception d'architectures d'apprentissage profond adaptées.Tout d'abord, cette thèse détaille des approches permettant de remédier au manque de données. Une simulation simple ainsi que des méthodes génératives pour créer des données annotées seront présentées. Elle décrit également le jeu de données CARRADA, composé de données synchronisées de caméra et de RADAR avec une méthode semi-automatique générant des annotations sur les représentations RADAR.%Aujourd'hui, le jeu de données CARRADA est le seul jeu de données fournissant des données RADAR brutes annotées pour des tâches de détection d'objets et de segmentation sémantique.Cette thèse présente ensuite un ensemble d'architectures d'apprentissage profond avec leurs fonctions de perte associées pour la segmentation sémantique RADAR.Elle décrit également une méthode permettant d'ouvrir la recherche sur la fusion des capteurs LiDAR et RADAR pour la compréhension de scènes.Enfin, cette thèse expose une contribution collaborative, le jeu de données RADIal avec RADAR haute définition (HD), LiDAR et caméra synchronisés. Une architecture d'apprentissage profond est également proposée pour estimer le pipeline de traitement du signal RADAR tout en effectuant simultanément un apprentissage multitâche pour la détection d'objets et la segmentation de l'espace libre de conduite. Note de contenu :
1. Introduction
1.1 Context
1.2 Motivations
1.3 Contributions and outlines
2. Background
2.1 RADAR theory
2.2 Recordings and signal processing
2.3 Artificial neural networks
2.4 Convolutional neural network
2.5 Recurrent neural network
2.6 Deep learning
3. Related work
3.1 Diverse applications
3.2 Automotive RADAR datasets
3.3 RADAR object detection
3.4 RADAR semantic segmentation
3.5 Sensor fusion
3.6 Conclusions
4. Proposed automotive RADAR datasets
4.1 RADAR simulation
4.2 RADAR data generation
4.3 CARRADA dataset
4.4 Conclusions
5. RADAR scene understanding
5.1 Multi-view RADAR semantic segmentation
5.2 Sensor fusion
5.3 Conclusions
6. High-definition RADAR
6.1 Motivations
6.2 RADIal dataset
6.3 Proposed method
6.4 Experiments and Results
6.5 Conclusions and discussions
7 Conclusion 125
7.1 Contributions
7.2 Future workNuméro de notice : 26803 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de doctorat : Signal, Images, Automatique et robotique : Palaiseau : 2022 Organisme de stage : Télécom Paris nature-HAL : Thèse DOI : sans Date de publication en ligne : 11/03/2022 En ligne : https://tel.archives-ouvertes.fr/tel-03606384/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100125
Titre : Event-driven feature detection and tracking for visual SLAM Type de document : Thèse/HDR Auteurs : Ignacio Alzugaray, Auteur Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2022 Note générale : bibliographie
thesis submitted to attain the degree of Doctor of Sciences of ETH ZurichLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] caméra d'événement
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image floue
[Termes IGN] reconnaissance de formes
[Termes IGN] séquence d'images
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Traditional frame-based cameras have become the de facto sensor of choice for a multitude of applications employing Computer Vision due to their compactness, low cost, ubiquity, and ability to provide information-rich exteroceptive measurements. Despite their dominance in the field, these sensors exhibit limitations in common, real-world scenarios where detrimental effects, such as motion blur during high-speed motion or over-/underexposure in scenes with poor illumination, are prevalent. Challenging the dominance of traditional cameras, the recent emergence of bioinspired event cameras has opened up exciting research possibilities for robust perception due to their high-speed sensing, High-Dynamic-Range capabilities, and low power consumption. Despite their promising characteristics, event cameras present numerous challenges due to their unique output: a sparse and asynchronous stream of events, only capturing incremental perceptual changes at individual pixels. This radically different sensing modality renders most of the traditional Computer Vision algorithms incompatible without substantial prior adaptation, as they are initially devised for processing sequences of images captured at fixed frame-rate. Consequently, the bulk of existing event-based algorithms in the literature have opted to discretize the event stream into batches and process them sequentially, effectively reverting to frame-like representations in an attempt to mimic the processing of image sequences from traditional sensors. Such event-batching algorithms have demonstrably outperformed other alternative frame-based algorithms in scenarios where the quality of conventional intensity images is severely compromised, unveiling the inherent potential of these new sensors and popularizing them. To date, however, many newly designed event-based algorithms still rely on a contrived discretization of the event stream for its processing, suggesting that the full potential of event cameras is yet to be harnessed by processing their output more naturally. This dissertation departs from the mere adaptation of traditional frame-based approaches and advocates instead for the development of new algorithms integrally designed for event cameras to fully exploit their advantageous characteristics. In particular, the focus of this thesis lies on describing a series of novel strategies and algorithms that operate in a purely event-driven fashion, \ie processing each event as soon as it gets generated without any intermediate buffering of events into arbitrary batches and thus avoiding any additional latency in their processing. Such event-driven processes present additional challenges compared to their simpler event-batching counterparts, which, in turn, can largely be attributed to the requirement to produce reliable results at event-rate, entailing significant practical implications for their deployment in real-world applications. The body of this thesis addresses the design of event-driven algorithms for efficient and asynchronous feature detection and tracking with event cameras, covering alongside crucial elements on pattern recognition and data association for this emerging sensing modality. In particular, a significant portion of this thesis is devoted to the study of visual corners for event cameras, leading to the design of innovative event-driven approaches for their detection and tracking as corner-events. Moreover, the presented research also investigates the use of generic patch-based features and their event-driven tracking for the efficient retrieval of high-quality feature tracks. All the developed algorithms in this thesis serve as crucial stepping stones towards a completely event-driven, feature-based Simultaneous Localization And Mapping (SLAM) pipeline. This dissertation extends upon established concepts from state-of-the-art, event-driven methods and further explores the limits of the event-driven paradigm in realistic monocular setups. While the presented approaches solely rely on event-data, the gained insights are seminal to future investigations targeting the combination of event-based vision with other, complementary sensing modalities. The research conducted here paves the way towards a new family of event-driven algorithms that operate efficiently, robustly, and in a scalable manner, envisioning a potential paradigm shift in event-based Computer Vision. Note de contenu : 1- Introduction
2- Contribution
3- Conclusion and outlookNuméro de notice : 28699 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Sciences : ETH Zurich : 2022 DOI : sans En ligne : https://www.research-collection.ethz.ch/handle/20.500.11850/541700 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100470
Titre : Modélisation temporelle du fouillis forestier radar Type de document : Thèse/HDR Auteurs : Xavier Husson, Auteur ; Fabrice Boust, Directeur de thèse Editeur : Université Paris-Saclay (Université Paris 11) Année de publication : 2022 Importance : 157 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse soutenue pour obtenir le grade de Docteur à l'Université Paris-Saclay, spécialité PhysiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] acquisition d'images
[Termes IGN] fouillis d'échos
[Termes IGN] image radar moirée
[Termes IGN] implémentation (informatique)
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] vent
[Termes IGN] visibilité spatio-temporelleIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) La végétation est un élément important pour le radar car elle est omniprésente et met en échec de nombreux algorithmes. Cela provient avant tout du mouvement de la végétation, sous l’effet du vent, qui induit un décalage Doppler. Dans cette thèse, nous avons développé un modèle de fouillis de végétation pour l’imagerie SAR. Pour ce modèle de fouillis, nous avons décidé de travailler sur la base de 3 hypothèses. Premièrement, nous avons choisi une modélisation géotypique au travers d’une approche procédurale de création d’arbres et de leur représentation par des maillages surfaciques. Deuxièmement, nous avons opté pour une modélisation électromagnétique asymptotique compatible des fréquences supérieures à 10 GHz, typiques des systèmes d’acquisition haute résolution. Troisièmement, nous avons retenu une modélisation animée constituée d’un maillage surfacique déformable à même de rendre compte du décalage Doppler. Pour cela, nous avons adapté un simulateur ONERA permettant la génération de données radars brutes. La première amélioration réside dans le choix d’une approche asymptotique en 2 étapes (optique géométrique et physique), détermination de la visibilité des facettes du maillage et évaluation du champ rétrodiffusé correspondant. La deuxième amélioration réside dans le développement d’une méthode d’interpolation afin de limiter le nombre de calculs de visibilité, point crucial pour l’imagerie SAR haute résolution. La formation d’images SAR pour différentes intensité de vents nous a permis d’observer la défocalisation due aux mouvements des arbres au cours d’une acquisition. Une analyse de la DSP, par comparaison avec le modèle de Billingsley, confirme la capacité de notre modèle à restituer le décalage Doppler. Note de contenu : 1. Introduction
1.1 Imagerie SAR
1.2 Simulation d’acquisitions SAR
1.3 Bibliographie sur les modèles d’arbres
2. Incorporation d’un modèle de végétation à un processus de simulation existant
2.1 Travaux antérieurs : simulateur EDGE
2.2 Adaptation de la chaîne de modélisation
2.3 Mise en avant de différentes échelles de temps
3. Mise en place de la chaîne de modélisation
3.1 Préparation de données d’entrée
3.2 Description du script maître
4. Evaluation du champ rétrodiffusé
4.1 Calcul de SER de polygones
4.2 Validation de l’implémentation de l’optique physique
4.3 Développement d’une approche prenant en compte la visibilité
4.4 Développement d’une approche prenant en compte la visibilité partielle
5. Génération de données simulées
5.1 Impact des paramètres de modélisation
5.2 Impact des paramètres de la végétation
6. Conclusion
6.1 Contributions
6.2 PerspectivesNuméro de notice : 26823 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Physique : Paris-Saclay : 2022 Organisme de stage : ONERA nature-HAL : Thèse DOI : sans Date de publication en ligne : 25/03/2022 En ligne : https://tel.archives-ouvertes.fr/tel-03620307/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100640 Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon / Le Bienfaiteur Sagang Takougoum (2022)
![]()
Titre : Monitoring forest-savanna dynamics in the Guineo-Congolian transition area of the centre region of Cameroon Type de document : Thèse/HDR Auteurs : Le Bienfaiteur Sagang Takougoum, Auteur ; Bonaventure Sonké, Directeur de thèse ; Nicolas Barbier, Directeur de thèse Editeur : Yaoundé : Université de Yaoundé Année de publication : 2022 Importance : 166 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l'Université de Yaoundé 1, Spécialité Botanique-EcologieLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Cameroun
[Termes IGN] carte d'utilisation du sol
[Termes IGN] carte de la végétation
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] dynamique de la végétation
[Termes IGN] écotone
[Termes IGN] flore locale
[Termes IGN] forêt
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] incendie de forêt
[Termes IGN] modèle statistique
[Termes IGN] savane
[Termes IGN] surveillance forestièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Understanding the effects of global change (combining anthropic and climatic pressures) on biome distribution needs innovative approaches allowing to address the large spatial scales involved and the scarcity of available ground data. Characterizing vegetation dynamics at landscape to regional scale requires both a high level of spatial detail (resolution), generally obtained through precise field measurements, and a sufficient coverage of the land surface (extent) provided by satellite images. The difficulty usually lies between these two scales as both signal saturation from satellite data and ground sampling limitations contribute to inaccurate extrapolations. Airborne laser scanning (ALS) data has revolutionized the trade-off between spatial detail and landscape coverage as it gives accurate information of the vegetation’s structure over large areas which can be used to calibrate satellite data. Also recent satellite data of improved spectral and spatial resolutions (Sentinel 2) allow for detailed characterizations of compositional gradients in the vegetation, notably in terms of the abundance of broad functional/optical plant types. Another major obstacle comes from the lack of a temporal perspective on dynamics and disturbances. Growing satellite imagery archives over several decades (45 years; Landsat) and available computing facilities such as Google Earth Engine (GEE) provide new possibilities to track long term successional trajectories and detect significant disturbances (i.e. fire) at a fine spatial detail (30m) and relate them to the current structure and composition of the vegetation. With these game changing tools our objective was to track long-term dynamics of forest-savanna ecotone in the Guineo-Congolian transition area of the Central Region of Cameroon with induced changes in the vegetatio structure and composition within two contrasted scenarios of anthropogenic pressures: 1) the Nachtigal area which is targeted for the dam construction and subject to intense agricultural activities and 2) the Mpem et Djim National Park (MDNP) which has no management plan. The maximum likelihood classification of the Spot 6/7 image aided with the information from the canopy height derived from ALS data discriminated the vegetation types within the Nachtigal area with good accuracy (96.5%). Using field plots data in upscaling aboveground biomass (AGB) form field plots estimates to the satellite estimates with model-based approaches lead to a systematic overestimation in AGB density estimates and a root mean squared prediction error (RMSPE) of up to 65 Mg.ha−1 (90%), whereas calibration with ALS data (AGBALS) lead to low bias and a drop of ~30% in RMSPE (down to 43 Mg.ha−1, 58%) with little effect of the satellite sensor used. However, these results also confirm that, whatever the spectral indices used and attention paid to sensor quality and pre-processing, the signal is not sufficient to warrant accurate pixel wise predictions, because of large relative RMSPE, especially above (200–250 Mg.ha−1). The design-based approach, for which average AGB density values were attributed to mapped land cover classes, proved to be a simple and reliable alternative (for landscape to region level estimations), when trained with dense ALS samples. AGB and species diversity measured within 74 field inventory plots (distributed along a savanna to forest successional gradient) were higher for the vegetation located in the MDNP compared to their pairs in the Nachtigal area. The automated unsupervised long-term (45 years) land cover change monitoring from Landsat image archives based on GEE captured a consistent and regular pattern of forest progression into savanna at an average rate of 1% (ca. 6 km².year-1). No fire occurrence was captured for savanna that transited to forest within five years of monitoring. Distinct assemblages of spectral species are apparent in forest vegetation which is consistent with the age of transition. As forest gets older AGBALS recovers at a rate of 4.3 Mg.ha-1.year-1 in young forest stands ( Note de contenu : Chapter 1. Generalities
1.1 Introduction
1.2 Literature Review
Chapter 2. Material And Methods
2.1 Material
2.2 Methods
Chapter 3. Results And Discussion
3.1 Results
3.2 Discussion
Chapter 4. Conclusion And Perspectives
4.1 Conclusion
4.2 PerspectivesNuméro de notice : 26820 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Thèse étrangère Note de thèse : Thèse de doctorat : Botanique-Ecologie : Yaoundé : 2022 Organisme de stage : Institut de Recherche pour le Développement IRD nature-HAL : Thèse DOI : sans Date de publication en ligne : 13/04/2022 En ligne : https://hal.inrae.fr/tel-03528875/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100465 PermalinkUse of multi-temporal and multi-sensor data for continental water body extraction in the context of the SWOT mission / Nicolas Gasnier (2022)
PermalinkPermalink3D urban scene understanding by analysis of LiDAR, color and hyperspectral data / David Duque-Arias (2021)
PermalinkAmélioration des résolutions spatiale et spectrale d’images satellitaires par réseaux antagonistes / Anaïs Gastineau (2021)
PermalinkAmélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond / Yawogan Gbodjo (2021)
PermalinkPermalinkApport de la modélisation physique pour la cartographie de la biodiversité végétale en forêts tropicales par télédétection optique / Dav Ebengo Mwampongo (2021)
PermalinkApport de la photogrammétrie et de l’intelligence artificielle à la détection des zones amiantées sur les fronts rocheux / Philippe Caudal (2021)
PermalinkApport de la photogrammétrie satellite pour la modélisation du manteau neigeux / César Deschamps-Berger (2021)
Permalink