Résultat de la recherche
1 recherche sur le mot-clé libre 'Bayesian classifiersboostingcomputational learning theorydecision treesgenetic algorithmslinear and polynomial classifiersnearest neighbor classifierneural networksperformance evaluationreinforcement learningstatistical learningtime-varying classes, imbalanced representationartificial intelligencemachine learningdata miningdeep learningunsupervised learning'
Ajouter le résultat dans votre panier Affiner la recherche Générer le flux rss de la recherche
Partager le résultat de cette recherche Interroger des sources externes
Titre : An Introduction to Machine Learning Type de document : Guide/Manuel Auteurs : Miroslav Kubat, Auteur Mention d'édition : 2ème édition Editeur : Springer International Publishing Année de publication : 2017 ISBN/ISSN/EAN : 978-3-319-63913-0 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] algorithme génétique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage par renforcement
[Termes IGN] apprentissage profond
[Termes IGN] arbre de décision
[Termes IGN] classificateur
[Termes IGN] classification barycentrique
[Termes IGN] classification bayesienne
[Termes IGN] exploration de données
[Termes IGN] raisonnement inductif
[Termes IGN] réseau neuronal artificiel
[Termes IGN] test de performanceMots-clés libres : Bayesian classifiersboostingcomputational learning theorydecision treesgenetic algorithmslinear and polynomial classifiersnearest neighbor classifierneural networksperformance evaluationreinforcement learningstatistical learningtime-varying classes, imbalanced representationartificial intelligencemachine learningdata miningdeep learningunsupervised learning Résumé : (Auteur) [Introduction] This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction as well as Inductive Logic Programming. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work. Numéro de notice : 26276 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Manuel DOI : 10.1007/978-3-319-63913-0 En ligne : https://doi.org/10.1007/978-3-319-63913-0 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94915