Résultat de la recherche
1 recherche sur le mot-clé libre 'Frame Field Learning algorithm'




Titre : Development of object detectors for satellite images by deep learning Type de document : Mémoire Auteurs : Alissa Kouraeva, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 57 p. Format : 21 x 30 cm Note générale : bibliographie
Mémoire d'ingénieur 3e année, Cycle PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] angle d'incidence
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image aérienne
[Termes IGN] image Pléiades-HR
[Termes IGN] image Pléiades-Neo
[Termes IGN] jeu de données
[Termes IGN] OpenStreetMap
[Termes IGN] réalité de terrain
[Termes IGN] recalage d'imageMots-clés libres : Frame Field Learning algorithm Index. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) With various uses cases in different sectors - marine, cartography, defense - object detection in satellite images is at the heart of image processing methods. This study aims to test existing building detection algorithms and improve them with the final goal being a precise cartography of buildings for 3D reconstruction with a high level of details. The Polygonization by Frame Field Learning algorithm is tested on different types of images: aerial images (50cm resolution), satellite images with 50cm (Pleiades) and 30cm (Pleiades Neo) resolutions. The ground truth is either already provided (Digitanie) or has to be retrieved from open access databases (OSM or BD TOPO IGN). Some problems of ground truth overlap appear in Pleiades neo images due to the relative precision in positioning of different data and also due to the incidence angle, that provides a greater revisiting capability. A re-implementation of the Frame Field Learning algorithm with the PyTorch Lightning framework is done in this study, with different experiments conducted concerning the configuration of the algorithm. Note de contenu : Introduction
1- Data
2- Methods
3- Results and discussion
ConclusionNuméro de notice : 24052 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire de fin d'études IT Organisme de stage : Airbus Defence and Space Geo SA Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101926