Résultat de la recherche
1 recherche sur le mot-clé libre 'enveloppe convexe'
Ajouter le résultat dans votre panier Affiner la recherche Générer le flux rss de la recherche
Partager le résultat de cette recherche Interroger des sources externes
Convex hull: another perspective about model predictions and map derivatives from remote sensing data / Jean-Pierre Renaud (2021)
Titre : Convex hull: another perspective about model predictions and map derivatives from remote sensing data Type de document : Article/Communication Auteurs : Jean-Pierre Renaud , Auteur ; Ankit Sagar , Auteur ; Pierre Barbillon, Auteur ; Olivier Bouriaud , Auteur ; Christine Deleuze, Auteur ; Cédric Vega , Auteur Editeur : Vienne [Autriche] : Technische Universität Wien Année de publication : 2021 Collection : Geowissenschaftliche Mitteilungen, ISSN 1811-8380 num. 104 Projets : ARBRE / AgroParisTech (2007 -) Conférence : SilviLaser 2021, 17th conference on Lidar Applications for Assessing and Managing Forest Ecosystems 28/09/2021 30/09/2021 Vienne + online Autriche open access proceedings Projets : DEEPSURF / Pironon, Jacques Importance : pp 71 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attribut non spatial
[Termes IGN] convexité
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] erreur systématique
[Termes IGN] modèle de simulation
[Termes IGN] modèle linéaireMots-clés libres : enveloppe convexe Résumé : (auteur) [introduction] In forest inventories as well as in the process of building models, obtaining an efficient sample is a central goal to reach precise estimates of forest attributes (Hawbaker et al. 2009, Frazer et al. 2011, Grafström et al. 2014, Saarela et al. 2015, Bouvier et al. 2019). In a model-based approach, a plots sample must cover adequately the variability of the considered forest attributes in order to minimise prediction error. Different strategies have been proposed to efficiently distribute the field sampling units in the auxiliary space of the remote sensing data (e.g. Hawbaker et al. 2009, Grafström et al. 2014). Some authors have proposed to stratify Airborne Laser Scanning data (ALS) to optimize sampling (Hawbaker et al. 2009, Frazer et al. 2011), and Maltamo et al. (2011) compared different field plot selection strategies in order to optimise models precision. Interestingly, White et al. (2013) applied convex hull approach to show uncovered forest structures by the field calibration sampling units, since large prediction errors could be associated with model extrapolations, resulting in potentially biased map derivatives. In this research, we use convex hull to identify the proportion of extrapolated pixels, computed their distance to the calibration domain and estimated bias associated to the linear model predictions on an ALS case study. Numéro de notice : C2021-030 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET/IMAGERIE/MATHEMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.34726/wim.1919 Date de publication en ligne : 01/12/2021 En ligne : https://doi.org/10.34726/wim.1919 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98997