Détail de l'éditeur
Université de Rennes 1
localisé à :
Rennes
|
Documents disponibles chez cet éditeur (13)



Analyse haute résolution de la morphologie des paysages et des processus à partir de LiDAR aéroporté répété et simulation hydraulique / Thomas Bernard (2022)
![]()
Titre : Analyse haute résolution de la morphologie des paysages et des processus à partir de LiDAR aéroporté répété et simulation hydraulique Type de document : Thèse/HDR Auteurs : Thomas Bernard, Auteur ; Dimitri Lague, Directeur de thèse ; Philippe Davy, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2022 Importance : 253 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 1, Spécialité Sciences de la Terre et de l’EnvironnementLangues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse du paysage
[Termes IGN] détection de changement
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] effondrement de terrain
[Termes IGN] géomorphologie locale
[Termes IGN] modèle hydrographique
[Termes IGN] Nouvelle-Zélande
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéIndex. décimale : THESE Thèses et HDR Résumé : (auteur) L’objectif fondamental de la géomorphologie est l’identification et la caractérisation des processus façonnant les paysages. En fournissant une représentation 3D haute précision et haute densité des paysages, le LiDAR aéroporté a révolutionné notre capacité à extraire des informations sur la topographie fournissant ainsi de nouvelles opportunités pour l’identification et la compréhension des processus géomorphologiques. Ce potentiel reste sous-exploité dans de nombreuses problématiques en géomorphologie du fait de l’incapacité des méthodes d’analyse actuelles à exploiter la richesse d’information fournie par le LiDAR aéroporté. Cette thèse intègre les derniers développements sur la simulation hydraulique 2D et la détection de changements 3D afin d’améliorer les méthodes d’analyse pour (i) la description de la structure des paysages fluviaux et (ii) l’identification et l’analyse géométrique des glissements de terrain à haute résolution. Les principaux résultats montrent que la simulation hydraulique 2D permet la définition d’indicateurs hydro-géomorphiques prenant pleinement en compte la structure haute résolution des écoulements de surface. Ces indicateurs permettent une meilleure identification des connexions versants-rivières et la caractérisation de la géométrie hydraulique des chenaux. L’intégration de la détection de changement 3D permet d’exploiter la structure 3D des données LiDAR pour la création d’inventaires robustes, complets et objectifs des glissements de terrain. Cette approche permet une meilleure quantification du volume des glissements de terrain en comparaison des approches traditionnelles. Note de contenu : Introduction générale
1- Etat de l'Art et problématiques
2- Apports de la simulation hydraulique 2D dans l’analyse morphologique haute résolution des paysages
3- Détection semi-automatique et analyses géométriques des glissements de terrain à partir de LiDAR aéroporté répété
4- Approche méthodologique préliminaire pour l’analyse morphodynamique des paysages à la suite de perturbations exogènes par LiDAR aéroporté répété et simulation hydraulique 2D
5- Conclusions et perspectivesNuméro de notice : 24024 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Sciences de la Terre et de l’Environnement : Rennes 1 : 2022 Organisme de stage : Géosciences DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03783246 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101820
Titre : Robustness of visual SLAM techniques to light changing conditions : Influence of contrasted local features, multi-planar representations and multimodal image analysis Type de document : Thèse/HDR Auteurs : Xi Wang, Auteur ; Eric Marchand, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2022 Importance : 153 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Rennes 1, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] éclairage
[Termes IGN] estimation de pose
[Termes IGN] information sémantique
[Termes IGN] primitive géométrique
[Termes IGN] programmation linéaire
[Termes IGN] robotique
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The SLAM (Simultaneous Localization And Mapping) technique concentrates on localizing and recovering the environment in a simultaneous way and is one of the core functionalities of many industrial products such as augmented reality, where the device poses should be tracked in real-time; autonomous driving, where one needs to localize the vehicle in a pre-generated map or unknown environment; and even modern filmmaking workflow, where the relative camera position and orientation are critical for post-processing or real-time prevising for directors and actors to visualise the visual effects on the stage. Multiple difficulties in different levels can influence the final performance of robot agents’s SLAM task, as the pipeline is long and complicated from the real world physics to the required information such as agent poses and 3-D map, which help us visualize colourful graphics scenes in AR devices or make hard decisions on the highway for autonomous driving. Many solutions are proposed for addressing each problem, respectively, with the means from classic statistic probability models to the modern data-driven deep neural network. However, the quest of improving the robot’s robustness under dynamic and complicated environments perisists and becomes more and more significant and active for nowadays robotics research. The need for improving the robustness of robot agents is imminent and regarded as one of most imperative factors for deploying robots ubiquitously in our daily life. Under this context, this thesis tries to address a small drop in the ocean of the problem of SLAM robustness, yet in a very systematic view: we try to break down the SLAM system into different and inter-influential modules. Then use the concept of "divide and conquer" for answering possible questions within each module and wishing to contribute to the community and help improve the robustness of SLAM systems under complicated conditions. With the above objectives, the contributions of the thesis are stated as follows for tackling the robustness problem from multiple angles: 1) From the image feature angle, we proposed a multiple layered image structure for improving the performance of traditional local image features under extreme conditions. Furthermore, an optimization method on linear searching and mutual information assisted convex optimization are designed for tuning the optimal parameters with the proposed structure; 2) From the geometric primitive angle, we proposed a relative pose estimation and SLAM framework under the multiple planar assumption, by keypoint feature-based and template tracker based methods, respectively. We tried to achieve better performance of mapping and tracking simultaneously with the help of a more general planar assumption. 3) From the angle of relocalization of the SLAM system, the idea is to recover the already passed locations of the robot agent for lowering the overall estimation error or when the robot is in lost status. We proposed a binary graph structure for embedding spatial information and heterogeneous data formats such as depth image, semantic information etc. The proposed method enables robotics SLAM systems to relocalize themselves with a higher success rate even under different lighting, weather and seasonal conditions. Note de contenu : 1- Introduction
2- Résumé
3- Background on visual SLAM techniques
4- Related work
5- Organisation
6- Multiple layers image
7- Multi-planar relative pose estimation via superpixel
8- TT-SLAM
9- Binary graph descriptor for robust relocalization on heterogeneous data
ConclusionNuméro de notice : 24074 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Rennes 1 : 2022 Organisme de stage : IRISA DOI : sans En ligne : https://www.theses.fr/2022REN1S022 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102162
Titre : LiDAR-based point clouds registration for localization in indoor environments Type de document : Thèse/HDR Auteurs : Ketty Favre, Auteur ; Luce Morin, Directeur de thèse ; Eric Marchand, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2021 Importance : 146 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 1, Spécialité Signal, Image, VisionLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de Gauss-Newton
[Termes IGN] appariement d'images
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace intérieur
[Termes IGN] octree
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage de données localisées
[Termes IGN] scène intérieure
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis deals with the problem of registration of 3D point clouds in indoor environments. Registration methods are proposed to obtain a compromise between time and accuracy. First, GNMR-ICP, a multi-resolution algorithm which robustly minimizes the point-to-plane distance between two point clouds using a Gauss-Newton method. The multi-resolution is done using an octree. On the ASL benchmark dataset, GNMR-ICP gives more accurate results than its equivalent using the small angle approximation (81% success rate against 43%). Computation times in structured environments are reduced (up to a factor of 2). Next we present NAP-ICP, an algorithm based on plane matching. Planes are matched using a score function based on the characteristics of pairs of planes. An additional point-to-plane registration is performed to ensure maximum accuracy. NAP-ICP registers 100% of the interior scenes of the ASL dataset and is more accurate than the evaluated state-of-the-art functions and is able to close the loops of the LOOP’IN dataset. Finally, PAR-ICP, a plane-based method where the matching is performed using a Random Forest is presented. PAR-ICP registers 100% of the interior scenes of the ASL dataset and is able to close the loops of LOOP’IN, allowing to generate incremental maps. Note de contenu : Introduction
1- Background
2- State of the art
3- Datasets
4- Multi-resolution registration of 3D point clouds
5- Plane-based registration of 3D point clouds
6- Learning-based plane matching for planet-to-plane
ConclusionNuméro de notice : 28635 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, Image, Vision : Rennes 1 : 2021 Organisme de stage : Institut d'Électronique et de Télécommunications DOI : sans En ligne : http://www.theses.fr/2021REN1S059 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99666
Titre : Multispectral object detection Type de document : Thèse/HDR Auteurs : Heng Zhang, Auteur ; Elisa Fromont, Directeur de thèse ; Sébastien Lefèvre, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2021 Importance : 114 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée en vue de l’obtention du grade de docteur en Informatique de l'Université de Rennes 1Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] chambre de prise de vue thermique
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] efficacité
[Termes IGN] fusion de données multisource
[Termes IGN] image multibande
[Termes IGN] précision de la classification
[Termes IGN] qualité du modèle
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Only using RGB cameras for automatic outdoor scene analysis is challenging when, for example, facing insufficient illumination or adverse weather. To improve the recognition reliability, multispectral systems add additional cameras (e.g. infra-red) and perform object detection from multispectral data. Although multispectral scene analysis with deep learning has been shown to have a great potential, there are still many open research questions and it has not been widely deployed in industrial contexts. In this thesis, we investigated three main challenges about multispectral object detection: (1) the fast and accurate detection of objects of interest from images; (2) the dynamic and adaptive fusion of information from different modalities;(3) low-cost and low-energy multispectral object detection and the reduction of its manual annotation efforts. In terms of the first challenge, we first optimize the label assignment of the object detection training with a mutual guidance strategy between the classification and localization tasks; we then realize an efficient compression of object detection models including the teacher-student prediction disagreements in a feature-based knowledge distillation framework. With regard to the second challenge, three different multispectral feature fusion schemes are proposed to deal with the most difficult fusion cases where different cameras provide contradictory information. For the third challenge, a novel modality distillation framework is firstly presented to tackle the hardware and software constraints of current multispectral systems; then a multi-sensor-based active learning strategy is designed to reduce the labeling costs when constructing multispectral datasets. Note de contenu : 1. Introduction
1.1 Context and motivations
1.2 Thesis outline
2. Deep learning background
2.1 General object detection
2.2 Multispectral object detection
2.3 Knowledge distillation
2.4 Active learning
2.5 Datasets
3. Efficient object detection on embedded devices
3.1 Best practices for training object detection models
3.2 Mutual Guidance for Anchor Matching
3.3 Prediction Disagreement aware Feature Distillation
3.4 Experimental results
4. Information fusion from multispectral data
4.1 Multispectral Fusion with Cyclic Fuse-and-Refine
4.2 Progressive Spectral Fusion
4.3 Experimental results for CFR and PS-Fuse
4.4 Guided Attentive Feature Fusion
4.5 Experimental results for GAFF
5. Sensors and annotations: low cost multispectral data processing
5.1 Deep Active Learning from Multispectral Data
5.2 Low-cost Multispectral Scene Analysis with Modality Distillation
6. Conclusions and future works
6.1 Conclusions
6.2 Application to remote sensing data
6.3 PerspectivesNuméro de notice : 26765 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Rennes 1 : 2021 Organisme de stage : (IRISA) INRIA nature-HAL : Thèse DOI : sans Date de publication en ligne : 17/01/2022 En ligne : https://hal.archives-ouvertes.fr/tel-03530257/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99855 Evaluation of time-series SAR and optical images for the study of winter land-use / Julien Denize (2019)
![]()
Titre : Evaluation of time-series SAR and optical images for the study of winter land-use Type de document : Thèse/HDR Auteurs : Julien Denize, Auteur ; Eric Pottier, Directeur de thèse ; Laurence Hubert-Moy, Directeur de thèse Editeur : Rennes : Université de Rennes 1 Année de publication : 2019 Importance : 274 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Rennes 1, Mathématiques et Sciences et Technologies de l'Information et de la Communication, Spécialité Signal Image Vision & GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] agriculture
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données polarimétriques
[Termes IGN] hiver
[Termes IGN] image à haute résolution
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] nébulosité
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelle
[Termes IGN] télédétection spatiale
[Termes IGN] utilisation du solRésumé : (auteur) The study of winter land-use is a major challenge in order to preserve and improve the quality of soils and surface water. However, knowledge of the spatio-temporal dynamics associated with winter land-use remains a challenge for the scientific community. In this context, the objective of this study is to evaluate the potential of time series of high spatial resolution optical and SAR images for the study of winter land-use at a local and regional scale. For that purpose, a methodology has been established to: (i) determine the most suitable classification method for identifying winter land-use ; (ii) compare Sentinel-1 SAR and Sentinel-2 optical images; (iii) define the most suitable SAR configuration by comparing three image time-series (Alos-2, Radarsat-2 and Sentinel-1).The results first of all highlighted the interest of the Random Forest classification algorithm to discriminate at a fine scale the different types of land use in winter. Secondly, they showed the value of Sentinel-2 data for mapping winter land-use at a local and regional scale. Finally, they determined that a dense time series of Sentinel-1 images was the most appropriate SAR configuration to identify winter land-use. In general, while this thesis has shown that Sentinel-2 data are best suited to studying land use in winter, SAR images are of great interest in regions with significant cloud cover, dense Sentinel-1 time-series having being defined as the most efficient. Note de contenu : General Introduction
1- Winter land-use: concepts, data and methods
2- Classification procedure for the winter land-use study at a local scale
3- SAR configuration for the study of winter land-use at a local scale
4- The study of winter land-use at a regional scale
General conclusion and perspectivesNuméro de notice : 25710 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal Image Vision & Géomatique : Rennes1 : 2019 Organisme de stage : Institut d’Electronique et de Télécommunication de Rennes nature-HAL : Thèse DOI : sans En ligne : https://hal.archives-ouvertes.fr/tel-02510333/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94858 Simultaneous characterization of objects temperature and radiative properties through multispectral infrared thermography / Thibaud Toullier (2019)
PermalinkDigital surface model generation over urban areas using high resolution satellite SAR imagery : tomographic techniques and their application to 3-Dchange monitoring / Martina Porfiri (2016)
PermalinkIndoor navigation of mobile robots based on visual memory and image-based visual servoing / Suman Raj Bista (2016)
PermalinkGestion de la complexité de scènes animées et interactives : contributions à la conception et à la représentation / Bernard Valton (1999)
PermalinkPermalinkPermalinkPermalinkPermalink