Détail de l'éditeur
International Society for Photogrammetry and Remote Sensing ISPRS
Commentaire :
ISP fondée en 1910 devient ISPRS en 1980
Collections rattachées :
Autorités liées :
|
Documents disponibles chez cet éditeur (309)



Titre : A 3D segments based algorithm for heterogeneous data registration Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Pascal Monasse, Auteur ; Bruno Vallet , Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Projets : 1-Pas de projet / Conférence : ISPRS 2022, XXIV ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 129 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme du recuit simulé
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] orthoimage
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] segment de droite
[Termes IGN] superposition de donnéesRésumé : (auteur) Combining image and LiDAR draws increasing interest in surface reconstruction, city and building modeling for constructing 3D virtual reality models because of their complementary nature. However, to gain from this complementarity, these data sources must be precisely registered. In this paper, we propose a new primitive based registration algorithm that takes 3D segments as features. The objective of the proposed algorithm is to register heterogeneous data. The heterogeneity is both in data type (image and LiDAR) and acquisition platform (terrestrial and aerial). Our algorithm starts by extracting 3D segments from LiDAR and image data with state of the art algorithms. Then it clusters the 3D segments of each data according to their directions. The obtained clusters are associated to find possible rotations, then 3D segments from associated clusters are matched in order to find the translation and scale factor minimizing a distance criteria between the two sets of 3D segments. Two optimizers (simulated annealing and RANSAC) are tested to minimize this distance criterion, first on synthetic data, then on real data. The experiments carried out demonstrate the robustness and speed of RANSAC compared to simulated annealing. Numéro de notice : C2022-018 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-129-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-129-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100844 Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments / Daniela Craciun (2022)
![]()
Titre : Automatic algorithm for georeferencing historical-to-nowadays aerial images acquired in natural environments Type de document : Article/Communication Auteurs : Daniela Craciun , Auteur ; Arnaud Le Bris
, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2 Projets : HIATUS / Giordano, Sébastien Conférence : ISPRS 2022, XXIV ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 21 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] appariement d'images
[Termes IGN] estimation de pose
[Termes IGN] géoréférencement
[Termes IGN] gradient
[Termes IGN] histogramme
[Termes IGN] image ancienne
[Termes IGN] milieu naturel
[Termes IGN] modèle numérique de surfaceRésumé : (auteur) Automatic georeferencing for historical-to-nowadays aerial images represents the main ingredient for supplying territory evolution analysis and environmental monitoring. Existing georeferencing methods based on feature extraction and matching reported successful results for multi-epoch aerial images acquired in structured and man-made environments. While improving the state-of-the-art of the multi-epoch georeferencing problem, such frameworks present several limitations when applied to unstructured scenes, such as natural feature-less environments, characterized by homogenous or texture-less areas. This is mainly due to the lack of structured areas which often results in sparse and ambiguous feature matches, introducing inconsistencies during the pose estimation process. This paper addresses the automatic georeferencing problem for historical aerial images acquired in unstructured natural environments. The research work presented in this paper introduces a feature-less algorithm designed to perform historical-to-nowadays image matching for pose estimation in a fully automatic fashion. The proposed algorithm operates within two stages: (i) 2D patch extraction and matching and (ii) 3D patch-based local alignment. The final output is a set of 3D patch matches and the 3D rigid transformation relating each homologous patches. The obtained 3D point matches are designed to be injected into traditional multi-views pose optimisation engines. Experimental results on real datasets acquired over Fabas area situated in France demonstrate the effectiveness of the proposed method. Our findings illustrate that the proposed georeferencing technique provides accurate results in presence of large periods of time separating historical from nowadays aerial images (up to 48 years time span). Numéro de notice : C2022-020 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2022-21-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-21-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100846 Automatic structuring of photographic collections for spatio-temporal monitoring of restoration sites: problem statement and challenges / Laura Willot (2022)
![]()
Titre : Automatic structuring of photographic collections for spatio-temporal monitoring of restoration sites: problem statement and challenges Type de document : Article/Communication Auteurs : Laura Willot, Auteur ; D. Vodislav, Auteur ; Livio de Luca, Auteur ; Valérie Gouet-Brunet , Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 46-2-W1 Projets : Alegoria / Gouet-Brunet, Valérie Conférence : 3D-ARCH 2022, 9th International Workshop 3D-ARCH "3D Virtual Reconstruction and Visualization of Complex Architectures" 02/03/2022 04/03/2022 Mantua Italie OA ISPRS Archives Importance : pp 521 - 528 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] cathédrale
[Termes IGN] enrichissement sémantique
[Termes IGN] image
[Termes IGN] mesure de similitude
[Termes IGN] modèle conceptuel de données
[Termes IGN] Paris (75)
[Termes IGN] patrimoine documentaire
[Termes IGN] recherche d'image basée sur le contenuRésumé : (auteur) Over the last decade, a large number of digital documentation projects have demonstrated the potential of image-based modelling of heritage objects in the context of documentation, conservation, and restoration. The inclusion of these emerging methods in the daily monitoring of the activities of a heritage restoration site (context in which hundreds of photographs per day can be acquired by multiple actors, in accordance with several observation and analysis needs) raises new questions at the intersection of big data management, analysis, semantic enrichment, and more generally automatic structuring of this data. In this article, we propose a data model developed around these questions and identify the main challenges to overcome the problem of structuring massive collections of photographs through a review of the available literature on similarity metrics used to organise the pictures based on their content or metadata. This work is realized in the context of the restoration site of the Notre-Dame de Paris cathedral that will be used as the main case study. Numéro de notice : C2022-003 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-xlvi-2-w1- 2022-521-2022 Date de publication en ligne : 25/02/2022 En ligne : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-2-W1-2022/5 [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100315
Titre : Detecting openings for indoor/outdoor registration Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Bruno Vallet , Auteur ; Pascal Monasse, Auteur
Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Projets : 1-Pas de projet / Gouet-Brunet, Valérie Conférence : ISPRS 2022, XXIV ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 177 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lancer de rayons
[Termes IGN] ouverture (bâtiment)
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segment de droite
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) Indoor/Outdoor modeling of buildings is an important issue in the field of building life cycle management. It is seen as a joint process where the two aspects collaborate to take advantage of their semantic and geometric complementary. This global approach will allow a more complete, correct, precise and coherent reconstruction of the buildings. The first issue of such modeling is thus to precisely register this data. The lack of overlap between indoor and outdoor data is the most encountered obstacle, more so when both data sets are acquired separately and using different types of sensors. As an opening in the façade is the unique common entity that can be seen from inside and outside, it can help the registration of indoor and outdoor point clouds. So it must be automatically, accurately and efficiently extracted. In this paper, we start by proposing a very efficient algorithm to detect openings with great precision in both indoor and outdoor scans. Afterwards, we integrate them in a registration framework. As an opening is defined by a rectangular shape composed of four segments, two horizontal and two vertical, we can write our registration problem as a minimization of a global robust distance between two segment sets and propose a robust approach to minimize this distance using the RANSAC paradigm. Numéro de notice : C2022-023 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-177-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-177-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100849
Titre : the EUROSDR time benchmark for historical aerial images Type de document : Article/Communication Auteurs : E.M. Farella, Auteur ; L. Morelli, Auteur ; Fabio Remondino, Auteur ; Jon P. Mills, Auteur ; Norbert Haala, Auteur ; Joep Crompvoets, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B2 Conférence : ISPRS 2022, XXIV ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 1175 - 1182 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] aérotriangulation
[Termes IGN] image aérienne
[Termes IGN] image ancienne
[Termes IGN] image multitemporelle
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] orthophotographieMots-clés libres : benchmark Résumé : (auteur) Automatic photogrammetric processing of historical (or archival) aerial photos is still a challenging task, particularly in cases of missing ancillary information, low radiometric and image quality, limited stereo coverage or large temporal span. However, with recent advances in photogrammetry and Artificial Intelligence (AI) algorithms for image processing and interpretation, an increasing number of applications are now feasible. The article presents the TIME (hisTorical aerIal iMagEs) benchmark (https://time.fbk.eu/), promoted by EuroSDR to explore the potential of historical aerial images. Realized in collaboration with various European NMCAs, the benchmark has garnered aerial image blocks and time series imagery captured since the 1950s. To support the photogrammetric processing of the digitized photos, ancillary data are supplied with available information about flight missions, taking cameras, and ground control points (GCPs). Several diverse investigations have been undertaken with the benchmark datasets, all captured over historical urban areas or landscapes. The paper describes the benchmark datasets and some potential research topics, presenting several tests and analyses realized with the collated and shared data. Numéro de notice : C2022-021 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B2-2022-1175-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-1175-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100847 Improving local adaptive filtering method employed in radiometric correction of analogue airborne campaigns / Lâmân Lelégard (2022)
PermalinkLandslide evolution pattern revealed by multi-temporal DSMs obtained from historical aerial images / Michele Santangelo (2022)
PermalinkPermalinkPermalinkRobust approach for urban road surface extraction using mobile laser scanning 3D point clouds / Abdul Nurunnabi (2022)
PermalinkPermalinkAn efficient representation of 3D buildings: application to the evaluation of city models / Oussama Ennafii (2021)
PermalinkAssessment of combining convolutional neural networks and object based image analysis to land cover classification using Sentinel 2 satellite imagery (Tenes region, Algeria) / N. Zaabar (2021)
PermalinkBenchmarking of convolutional neural network approaches for vegetation land cover mapping / Benjamin Carpentier (2021)
PermalinkPermalink