Détail de l'éditeur
ArXiv - Université Cornell
localisé à :
Ithaca
|
Documents disponibles chez cet éditeur (24)



Titre : Deep surface reconstruction from point clouds with visibility information Type de document : Article/Communication Auteurs : Raphaël Sulzer , Auteur ; Loïc Landrieu
, Auteur ; Alexandre Boulch, Auteur ; Renaud Marlet, Auteur ; Bruno Vallet
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : BIOM / Vallet, Bruno Importance : 13 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de points
[Termes IGN] visibilitéRésumé : (auteur) Most current neural networks for reconstructing surfaces from point clouds ignore sensor poses and only operate on raw point locations. Sensor visibility, however, holds meaningful information regarding space occupancy and surface orientation. In this paper, we present two simple ways to augment raw point clouds with visibility information, so it can directly be leveraged by surface reconstruction networks with minimal adaptation. Our proposed modifications consistently improve the accuracy of generated surfaces as well as the generalization ability of the networks to unseen shape domains. Numéro de notice : P2022-002 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Preprint nature-HAL : Préprint DOI : sans Date de publication en ligne : 03/02/2022 En ligne : https://arxiv.org/abs/2202.01810v1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99811 Learning multi-view aggregation in the wild for large-scale 3D semantic segmentation / Damien Robert (2022)
![]()
Titre : Learning multi-view aggregation in the wild for large-scale 3D semantic segmentation Type de document : Article/Communication Auteurs : Damien Robert, Auteur ; Bruno Vallet , Auteur ; Loïc Landrieu
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Conférence : CVPR 2022 19/06/2022 24/06/2022 New Orleans Louisiane - Etats-Unis Importance : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] chaîne de traitement
[Termes IGN] données localisées 2D
[Termes IGN] données localisées 3D
[Termes IGN] données massives
[Termes IGN] pixel
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Recent works on 3D semantic segmentation propose to exploit the synergy between images and point clouds by processing each modality with a dedicated network and projecting learned 2D features onto 3D points. Merging large-scale point clouds and images raises several challenges, such as constructing a mapping between points and pixels, and aggregating features between multiple views. Current methods require mesh reconstruction or specialized sensors to recover occlusions, and use heuristics to select and aggregate available images. In contrast, we propose an end-to-end trainable multi-view aggregation model leveraging the viewing conditions of 3D points to merge features from images taken at arbitrary positions. Our method can combine standard 2D and 3D networks and outperforms both 3D models operating on colorized point clouds and hybrid 2D/3D networks without requiring colorization, meshing, or true depth maps. We set a new state-of-the-art for large-scale indoor/ outdoor semantic segmentation on S3DIS (74.7 mIoU 6-Fold) and on KITTI360 (58.3 mIoU). Our full pipeline is accessible at https: //github.com/drprojects/DeepViewAgg, and only requires raw 3D scans and a set of images and poses. Numéro de notice : C2022-006 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Preprint nature-HAL : Préprint DOI : sans Date de publication en ligne : 15/04/2022 En ligne : https://doi.org/10.48550/arXiv.2204.07548 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100490
Titre : Multi-layer modeling of dense vegetation from aerial LiDAR scans Type de document : Article/Communication Auteurs : Ekaterina Kalinicheva , Auteur ; Loïc Landrieu
, Auteur ; Clément Mallet
, Auteur ; Nesrine Chehata
, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Conférence : CVPR 2022 19/06/2022 24/06/2022 New Orleans Louisiane - Etats-Unis Importance : pp 1 - 10 Format : 21 x 30 cm Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte d'occupation du sol
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étage de végétation
[Termes IGN] foresterie
[Termes IGN] maillage
[Termes IGN] parcelle forestière
[Termes IGN] reconstruction d'objet
[Termes IGN] segmentation d'image
[Termes IGN] semis de pointsRésumé : (auteur) The analysis of the multi-layer structure of wild forests is an important challenge of automated large-scale forestry. While modern aerial LiDARs offer geometric information across all vegetation layers, most datasets and methods focus only on the segmentation and reconstruction of the top of canopy. We release WildForest3D, which consists of 29 study plots and over 2000 individual trees across 47 000m2 with dense 3D annotation, along with occupancy and height maps for 3 vegetation layers: ground vegetation, understory, and overstory. We propose a 3D deep net- work architecture predicting for the first time both 3D point- wise labels and high-resolution layer occupancy rasters simultaneously. This allows us to produce a precise estimation of the thickness of each vegetation layer as well as the corresponding watertight meshes, therefore meeting most forestry purposes. Both the dataset and the model are released in open access: https://github.com/ ekalinicheva/multi_layer_vegetation. Numéro de notice : C2022-007 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : FORET/IMAGERIE Nature : Preprint nature-HAL : Préprint DOI : sans Date de publication en ligne : 25/04/2022 En ligne : https://arxiv.org/abs/2204.11620 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100509 A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery / Sajid Ghuffar (2022)
![]()
Titre : A pipeline for automated processing of Corona KH-4 (1962-1972) stereo imagery Type de document : Article/Communication Auteurs : Sajid Ghuffar, Auteur ; Tobias Bolch, Auteur ; Ewelina Rupnik , Auteur ; Atanu Bhattacharya, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : 1-Pas de projet / Vallet, Bruno Importance : pp 1 - 24 Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] compensation par faisceaux
[Termes IGN] géométrie de l'image
[Termes IGN] géométrie épipolaire
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Corona
[Termes IGN] image panoramique
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle stéréoscopique
[Termes IGN] point d'appuiRésumé : (auteur) The Corona KH-4 reconnaissance satellite missions from 1962-1972 acquired panoramic stereo imagery with high spatial resolution of 1.8-7.5 m. The potential of 800,000+ declassified Corona images has not been leveraged due to the complexities arising from handling of panoramic imaging geometry, film distortions and limited availability of the metadata required for georeferencing of the Corona imagery. This paper presents Corona Stereo Pipeline (CoSP): A pipeline for processing of Corona KH-4 stereo panoramic imagery. CoSP utlizes a deep learning based feature matcher SuperGlue to automatically match features point between Corona KH-4 images and recent satellite imagery to generate Ground Control Points (GCPs). To model the imaging geometry and the scanning motion of the panoramic KH-4 cameras, a rigorous camera model consisting of modified collinearity equations with time dependent exterior orientation parameters is employed. The results show that using the entire frame of the Corona image, bundle adjustment using well-distributed GCPs results in an average standard deviation (SD) of less than 2 pixels. We evaluate fiducial marks on the Corona films and show that pre-processing the Corona images to compensate for film bending improves the accuracy. We further assess a polynomial epipolar resampling method for rectification of Corona stereo images. The distortion pattern of image residuals of GCPs and y-parallax in epipolar resampled images suggest that film distortions due to long term storage as likely cause of systematic deviations. Compared to the SRTM DEM, the Corona DEM computed using CoSP achieved a Normalized Median Absolute Deviation (NMAD) of elevation differences of ? 4m over an area of approx. 4000km2. We show that the proposed pipeline can be applied to sequence of complex scenes involving high relief and glacierized terrain and that the resulting DEMs can be used to compute long term glacier elevation changes over large areas. Numéro de notice : P2022-001 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : Préprint DOI : sans Date de publication en ligne : 09/01/2022 En ligne : https://arxiv.org/abs/2201.07756 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99614 Connecting images through time and sources: Introducing low-data, heterogeneous instance retrieval / Dimitri Gominski (2021)
![]()
Titre : Connecting images through time and sources: Introducing low-data, heterogeneous instance retrieval Type de document : Article/Communication Auteurs : Dimitri Gominski , Auteur ; Valérie Gouet-Brunet
, Auteur ; Liming Chen, Auteur
Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2021 Projets : Alegoria / Gouet-Brunet, Valérie Importance : 5 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'images
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données hétérogènes
[Termes IGN] exploration de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image multi sources
[Termes IGN] indexation sémantique
[Termes IGN] précision de la classification
[Termes IGN] recherche d'image basée sur le contenuRésumé : (auteur) With impressive results in applications relying on feature learning, deep learning has also blurred the line between algorithm and data. Pick a training dataset, pick a backbone network for feature extraction, and voilà; this usually works fora variety of use cases. But the underlying hypothesis that there exists a training dataset matching the use case is not alwaysmet. Moreover, the demand for interconnections regardless of the variations of the content calls for increasing generalization and robustness in features. An interesting application characterized by these problematics is the connection of historical and cultural databases of images.Through the seemingly simple task of instance retrieval, wepropose to show that it is not trivial to pick features respondingwell to a panel of variations and semantic content. Introducing anew enhanced version of the ALEGORIA benchmark, we compare descriptors using the detailed annotations. We further give in sights about the core problems in instance retrieval, testing fourstate-of-the-art additional techniques to increase performance. Numéro de notice : P2021-001 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Preprint nature-HAL : Préprint DOI : sans Date de publication en ligne : 21/03/2021 En ligne : https://arxiv.org/pdf/2103.10729.pdf Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97398 Leveraging class hierarchies with metric-guided prototype learning / Vivien Sainte Fare Garnot (2021)
PermalinkPanoptic segmentation of satellite image time series with convolutional temporal attention networks / Vivien Sainte Fare Garnot (2021)
PermalinkPermalinkUnifying remote sensing image retrieval and classification with robust fine-tuning / Dimitri Gominski (2021)
PermalinkA new segmentation method for the homogenisation of GNSS-derived IWV time-series / Annarosa Quarello (2020)
PermalinkPermalinkVery high resolution land cover mapping of urban areas at global scale with convolutional neural network / Thomas Tilak (2020)
PermalinkChallenging deep image descriptors for retrieval in heterogeneous iconographic collections / Dimitri Gominski (2019)
PermalinkHow IGN (France) computed the so-called "centre of gravity" of physical Europe in 1989 and 2004 / Jean-François Hangouët (2019)
PermalinkPermalink