Détail de l'éditeur
Université de Bretagne Sud
localisé à :
Vannes
|
Documents disponibles chez cet éditeur (2)



Titre : Learning to map street-side objects using multiple views Type de document : Thèse/HDR Auteurs : Ahmed Samy Nassar, Auteur ; Sébastien Lefèvre, Directeur de thèse ; Jan Dirk Wegner, Directeur de thèse Editeur : Vannes : Université de Bretagne Sud Année de publication : 2021 Importance : 139 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université de Bretagne Sud, spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] cartographie par internet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données multisources
[Termes IGN] estimation de pose
[Termes IGN] géolocalisation
[Termes IGN] graphe
[Termes IGN] image Streetview
[Termes IGN] inventaire
[Termes IGN] mobilier urbain
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Creating inventories of street-side objects and their monitoring in cities is a labor-intensive and costly process. Field workers are known to conduct this process on-site to record properties about the object. These properties can be the location, species, height, and health of a tree as an example. To monitor cities, gathering such information on a large scale becomes challenging. With the abundance of imagery, adequate coverage of a city is achieved from different views provided by online mapping services (e.g., Google Maps and Street View, Mapillary). The availability of such imagery allows efficient creation and updating of inventories of street-side objects status by using computer vision methods such as object detection and multiple object tracking. This thesis aims at detecting and geo-localizing street-side objects, especially trees and street signs, from multiple views using novel deep learning methods. Note de contenu : 1- Introduction
2- Background
3- Multi-view instance matching with learned geometric soft-constraints
4- Simultaneous multi-view instance detection with learned geometric softconstraints
5- GeoGraphV2: Graph-based aerial & street view multi-view object detection with geometric cues end-to-end
6- ConclusionNuméro de notice : 28674 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Université de Bretagne Sud : 2021 Organisme de stage : IRISA DOI : sans En ligne : https://hal.science/tel-03523658 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99920 Recherche multimodale d'images aériennes multi-date à l'aide d'un réseau siamois / Margarita Khokhlova (2020)
![]()
![]()
Titre : Recherche multimodale d'images aériennes multi-date à l'aide d'un réseau siamois Type de document : Article/Communication Auteurs : Margarita Khokhlova , Auteur ; Valérie Gouet-Brunet
, Auteur ; Nathalie Abadie
, Auteur ; Liming Chen, Auteur
Editeur : Vannes : Université de Bretagne Sud Année de publication : 2020 Projets : Alegoria / Gouet-Brunet, Valérie Conférence : RFIAP 2020, Reconnaissance des Formes, Image, Apprentissage et Perception 23/06/2020 26/06/2020 Vannes France Open Access Proceedings Importance : 11 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse du paysage
[Termes IGN] appariement d'images
[Termes IGN] architecture de réseau
[Termes IGN] BD ortho
[Termes IGN] BD Topo
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] données multitemporelles
[Termes IGN] géolocalisation
[Termes IGN] image aérienne
[Termes IGN] image multitemporelle
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] réseau neuronal siamois
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Cet article présente un réseau multimodal qui met en correspondance des images aériennes de territoires urbains et ruraux français prises à environ 15 ans d'intervalle. Il devrait être invariant à un large éventail de changements, tels que l'évolution du paysage au fil des années. Il exploite les images originales et les régions sémantiquement segmentées et étiquetées. Le coeur de la méthode est un réseau siamois qui apprend à extraire des caractéristiques des paires d'images correspondantes dans le temps et des paires non correspondantes. Ces descripteurs sont suffisamment discriminants pour qu'un simple classifieur k-NN suffise comme critère de géo-correspondance final. Dans cet article, nous dé-montrons que notre descripteur siamois surpasse les autres descripteurs d'images en termes de recherche d'images par contenu à travers le temps. Numéro de notice : C2020-003 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésNat DOI : sans En ligne : https://cap-rfiap2020.sciencesconf.org/data/RFIAP_2020_paper_21.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95446 Voir aussiDocuments numériques
en open access
rfiap2020_21_cameraready.pdfAdobe Acrobat PDF