Détail de l'éditeur
Université Gustave Eiffel
localisé à :
Champs-sur-Marne
|
Documents disponibles chez cet éditeur (10)



Learning spatio-temporal representations of satellite time series for large-scale crop mapping / Vivien Sainte Fare Garnot (2022)
![]()
Titre : Learning spatio-temporal representations of satellite time series for large-scale crop mapping Type de document : Thèse/HDR Auteurs : Vivien Sainte Fare Garnot , Auteur ; Clément Mallet
, Directeur de thèse ; Nesrine Chehata
, Directeur de thèse ; Loïc Landrieu
, Encadrant
Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN Année de publication : 2022 Autre Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Note générale : bibliographie
Thèse de doctorat de l’Université Gustave Eiffel, École doctorale n° 532, Mathématiques, Science, et Technologie de l’Information et de la Communication (MSTIC), Spécialité de doctorat : Signal, Image, et AutomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] carte agricole
[Termes IGN] fusion de données
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] image satellite
[Termes IGN] parcelle agricole
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelleMots-clés libres : segmentation panotique, mécanisme d'auto-attention, encodage spatio-temporel Résumé : (auteur) L’analyse et le suivi de l’activité agricole d’un territoire nécessitent la production de cartes agricoles précises. Ces cartes identifient les bordures de chaque parcelle ainsi que le type de culture. Ces informations sont précieuses pour une variété d’acteurs et ont des applications allant de la prévision de la production alimentaire à l’allocation de subventions ou à la gestion environnementale. Alors que les premières cartes agricoles nécessitaient un travail de terrain fastidieux, l’essor de l’analyse automatisée des données de télédétection a ouvert la voie à des cartographies à grande échelle. Dans cette thèse, nous nous intéressons à la cartographie agricole à partir de séries temporelles d’images satellites multispectrales. Dans la plupart des travaux de la dernière décennie, ce problème est abordé à l’aide de modèles d’apprentissage automatique entraînés sur des descripteurs conçus par des experts. Cependant, dans la littérature de vision par ordinateur (VO) et du traitement automatique de la langue (TAL), l’entrainement de modèles d’apprentissage profond à apprendre des représentations à partir des données brutes a constitué un changement de paradigme menant à des performances sans précédent sur une variété de problèmes. De même, l’application de ces modèles d’apprentissage profond aux données de télédétection a considérablement amélioré l’état de l’art pour la cartographie agricole ainsi que d’autres tâches de télédétection. Dans cette thèse, nous soutenons que les méthodes actuelles issues des littérature VO et TAL ignorent certaines des spécificités des données de télédétection et ne devraient pas être appliquées directement. Au contraire, nous prônons le développement de méthodes adaptées, exploitant les structures spatiales, spectrales et temporelles spécifiques des séries temporelles d’images satellites. Nous caractérisons la cartographie agricole successivement comme une classification à la parcelle, une segmentation sémantique et une segmentation panoptique. Pour chacune de ces tâches, nous développons une nouvelle architecture d’apprentissage profond adaptée aux particularités de la tâche et inspirée des avancées récentes de l’apprentissage profond. Nous montrons que nos méthodes établissent un nouvel état de l’art tout en étant plus efficaces que les approches concurrentes. Plus précisément, nous présentons (i) le Pixel-Set Encoder, un encodeur spatial efficace, (ii) le Temporal Attention Encoder (TAE), un encodeur temporel utilisant la self-attention, (iii) le U-net avec TAE, une variation du TAE pour les problèmes de segmentation, et (iv) Parcel-as-Point, un module de segmentation d’instance conçu pour la segmentation panoptique des parcelles. Nous étudions également comment exploiter des séries temporelles multimodales combinant des informations optiques et radar. Nous améliorons ainsi les performances de nos modèles ainsi que leur robustesse aux nuages. Enfin, nous considérons l’arbre hiérarchique qui décrit les relations sémantiques entre les types de culture. Nous présentons une méthode pour inclure cette structure dans le processus d’apprentissage. Sur la classification des cultures ainsi que d’autres problèmes de classification, notre méthode réduit le taux d’erreurs entre les classes sémantiquement éloignées. En plus de ces méthodes, nous introduisons PASTIS, le premier jeu de données en accès libre de séries temporelles d’images satellites multimodales avec des annotations panoptiques de parcelles agricoles. Nous espérons que ce jeu de données, ainsi que les résultats prometteurs présentés dans cette thèse encourageront d’autres travaux de recherche et aideront à produire des cartes agricoles toujours plus précises. Note de contenu : 0- Introduction
1- Spatial and temporal encoding for parcel-based classification
2- Pixel-based segmentation methods
3- Leveraging multiple modalities
4- Leveraging the class hierarchy
5- ConclusionNuméro de notice : 17694 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de doctorat : Signal, Image, et Automatique : Gustave Eiffel : 2022 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 13/01/2022 En ligne : https://hal.archives-ouvertes.fr/IGN-ENSG/tel-03524429v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99366 Monitoring grassland dynamics by exploiting multi-modal satellite image time series / Anatol Garioud (2022)
![]()
Titre : Monitoring grassland dynamics by exploiting multi-modal satellite image time series Titre original : Suivi de la dynamique des prairies permanentes par analyse des séries temporelles multi-modales Type de document : Thèse/HDR Auteurs : Anatol Garioud , Auteur ; Clément Mallet
, Directeur de thèse ; Silvia Valero, Directeur de thèse
Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2022 Importance : 194 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée et soutenue en vue de l'obtention du Doctorat de l'Université Gustave Eiffel, Spécialité Sciences et Technologies de l'Information GéographiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] analyse multivariée
[Termes IGN] apprentissage profond
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] données auxiliaires
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Mâcon
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] prairie
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] seuillage d'image
[Termes IGN] superpixel
[Termes IGN] surveillance agricole
[Termes IGN] ToulouseIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) The vast grassland surfaces as well as the growing recognition of the ecosystem services thez provide have revealed urgent needs for their conservation and sutainable management. Despite the acknowledged importance of grassland management practices, there are currently no large-scale efforts reporting on their frequency and nature. Satellite remote sensing time series appear to be a suitable tool for efficient grassland monitoring and allow synoptic and regular analysis. The research conducted in this PhD aims to develop methods for the detection of grassland management practices from complementary optical and SAR multivariate time series. Advances in deep learning are employed to regress multivariate SAR time series and contextual knowledge towards optical NDVI. Resulting gap-free time series are used to efficiently explore methods aiming to detect vegetation status changes related to management practices on grasslands. Note de contenu : INTRODUCTION
1. Grasslands and remote sensing: context, diversity and challenges
1.1 Definition, extent and importance of grasslands
1.2 Earth observation from space: principles and applications over grasslands
1.3 Problem statement and objectives
1.4 Outline of the manuscript
2. Study areas and datasets
2.1 Study areas
2.2 Satellite data
2.3 Reference and ancillary datasets
2.4 Feature derived from sentinel images for grassland monitoring
2.5 Description of the feature engineering steps
2.6 Exploring the relationships between derived satellite features
2.7 Concluding remarks
HIGH-TEMPORAL SAMPLED TIME-SERIES
3. Sentinels regression for vegetation monitoring
3.1 Monitoring vegetation through optical-SAR synergy
3.2 Retrieving missing data in optical time series
3.3 SenRVM: a deep learning-based regression framework
3.4 Concluding remarks
4. Outcomes of the SenRVM approach
4.1 Experimental design for training and evaluating SenRVM models
4.2 Assessment of SenRVM predictions
4.3 Empirical analysis of the SenRVM results
4.4 Generalization capabilities of single-class grassland SenRVM models
4.5 Further post-processing of SenRVM results
4.6 Concluding remarks
MONITORING GRASSLANDS
5. Detecting and quantifying grassland management practices
5.1 Challenges and related work
5.2 The proposed methodology
5.3 Description of validation data
5.4 Experimental setup
5.5 Assessment of the proposed method
5.6 Potential outcomes
5.7 Concluding remarks
GENERAL CONCLUSION
6. Conclusion and perspectives
6.1 Summary
6.2 PerspectivesNuméro de notice : 26831 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Sciences et Technologies de l'Information Géographique : Gustave Eiffel : 2022 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans En ligne : https://www.theses.fr/s208897 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100728 Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 26831-01 THESE Livre Centre de documentation Thèses Disponible Apport des données Sentinel-1 pour le suivi continu de la forêt tropicale : Cas de la Guyane / Marie Ballère (2021)
![]()
Titre : Apport des données Sentinel-1 pour le suivi continu de la forêt tropicale : Cas de la Guyane Type de document : Thèse/HDR Auteurs : Marie Ballère , Auteur ; Pierre-Louis Frison
, Directeur de thèse
Editeur : Lyon [France] : Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement CEREMA Année de publication : 2021 Autre Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Note générale : bibliographie
Thèse de Doctorat de l'Université Gustave Eiffel, spécialité : Sciences et Technologies de l'Information GéographiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] données exogènes
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] image Sentinel-SARRésumé : (auteur) Les forêts tropicales abritent la biodiversité la plus riche de notre planète et jouent un rôle particulièrement important dans le stockage du carbone et le cycle de l'eau. Le suivi de la dégradation de ce milieu est un défi d'actualité car il représente un danger immédiat pour l'environnement et la biodiversité. Par ailleurs, depuis 2014, la mise en orbite des satellites Sentinel dans le cadre du programme européen Copernicus constitue une réelle révolution dans le panorama des capteurs d'observation de la Terre existants jusqu'alors. En effet, des données optiques (Sentinel-2) et radar (Sentinel-1) sont, depuis lors, accessibles librement à tous et permettent des acquisitions à une résolution décamétrique et une répétitivité allant de 5 à 12 jours selon la région analysée. L'objectif de cette thèse consiste donc à développer des méthodes pour le suivi de la forêt tropicale basées sur des données radar Sentinel-1 et des produits de cartographie exogènes. Plus spécifiquement, l'étude a pour but de fournir des outils pour observer le déboisement, en produisant des cartes en quasi-temps réel, puis en caractérisant les zones détectées avec la cause de leur déboisement. Ces informations sont nécessaires à l'estimation et au suivi du déboisement sur les zones tropicales, et à la lutte contre les défriches illicites. La région test est la Guyane. Couverte à plus de 95% par la forêt, elle est caractérisée par de nombreux types de perte forestière permettant de valider la méthode sur de nombreuses caractéristiques. De plus, ce territoire étant relativement bien surveillé, beaucoup de données cartographiques d'occupation du sol sont disponibles pour situer les déboisements ou pour servir de référence au niveau spatial. La première phase du travail est l'amélioration d'une méthode de détection du déboisement à partir des données Sentinel-1 et son évaluation sur la Guyane. La validation de la carte produite s'appuie sur 1 867 données (de différents types de déboisement) produites de manière indépendante, et représentant un total de 2 124.5 ha à travers toute la Guyane sur une période de 2 ans. Les résultats obtenus sur la Guyane au niveau spatial sont très satisfaisants : 96% de précision sur les surfaces déboisées et 81.5% de rappel. La mise en place d'une campagne terrain a rendu possible l'estimation du côté quasi-temps réel de la méthode sur 26 parcelles et avance un délai médian de détection de 3.5 jours. Une comparaison avec un produit optique souvent pris comme référence, a démontré l'avantage des données Sentinel-1 pour ces régions caractérisées par de fortes couvertures nuageuses. Cette meilleure performance s'observe tant sur le plan spatial (rappel du radar supérieur de plus de 35%), que sur le plan temporel (un tiers des zones déboisées nécessitant une surveillance est détecté avec 3 mois de retard par les images optiques). La deuxième partie du travail consiste à caractériser les zones déboisées détectées afin de déterminer leur cause. Pour cela, des méthodes d'apprentissage automatique ont été utilisées pour choisir des indicateurs cartographiques pertinents, permettant de produire un modèle prédictif simple, fiable, automatique et utilisable à l'échelle de la Guyane en temps-réel. Les indicateurs F-scores de chaque type de déboisement sont de 97% pour l'orpaillage et l'agriculture, 95% pour l'exploitation forestière, 87% pour l'urbanisation et 76% pour la classe « autre », pouvant se rapporter à des perturbations naturelles. Ce travail a montré la pertinence d'utiliser des indicateurs cartographiques pour déterminer la cause des déboisements en Guyane, permettant cette identification en temps-réel. Ces travaux qui démontrent le potentiel des données Sentinel-1 pour le suivi continu des forêts tropicales ont été menés en interaction avec les acteurs locaux. Ils montrent également la complémentarité de systèmes provenant de capteurs différents et pourront être poursuivis en ce sens. Note de contenu : 1- Introduction
2- Les pertes forestières tropicales
3- Site d'Etude et Données
4- Analyse et interprétation
5- Méthodes et validation
6- Résultats
7- Valorisations et perspectives
8- ConclusionNuméro de notice : 17363 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Sciences et Technologies de l'Information Géographique: Gustave Eiffel : 2021 Organisme de stage : LaSTIG (IGN) nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03629552/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99020 Description et recherche d’image généralisables pour l’interconnexion et l’analyse multi-source / Dimitri Gominski (2021)
![]()
Titre : Description et recherche d’image généralisables pour l’interconnexion et l’analyse multi-source Type de document : Thèse/HDR Auteurs : Dimitri Gominski , Auteur ; Valérie Gouet-Brunet
, Directeur de thèse ; Liming Chen, Directeur de thèse
Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2021 Autre Editeur : Lyon : Ecole Centrale de Lyon Projets : Alegoria / Gouet-Brunet, Valérie Note générale : bibliographie
thèse soutenue le 9 nov. 2021, à l'Université Gustave Eiffel, dans le cadre de l'École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication, en partenariat avec LaSTIG - Laboratoire en Sciences et Technologies de l'Information Géographique (laboratoire).Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] apprentissage profond
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image multi sources
[Termes IGN] indexation sémantique
[Termes IGN] méthode robuste
[Termes IGN] recherche d'image basée sur le contenuRésumé : (auteur) Avec un volume toujours plus grand d'images accessibles numériquement, établir des connexions pour structurer et analyser les données devient d'autant plus important. Une formulation typique pour connecter entre elles des images sans utiliser de métadonnées est la recherche d'image basée contenu (RIBC). Similairement aux autres applications en vision par ordinateur, la RIBC a bénéficié du pouvoir expressif des réseaux de neurones convolutifs (CNN) et obtenu des résultats inédits sur les benchmarks usuels. Cependant, il est difficile de dire si cette performance est due à la proposition d'architectures et de modèles toujours plus évolués, ou simplement à la présence d'un jeu de données d'entraînement qui correspond bien au cas d'usage, c'est-à-dire qui a des caractéristiques visuelles et sémantiques similaires. En effet, le paradigme habituel du couple modèle-jeu d'entraînement montre ses limites dès lors qu'on sort du cas caractérisé par les données d'entraînement: la performance chute si on teste sur des données différentes ou avec une variabilité trop grande.
Cette thèse s'intéresse à cette question avec un regard critique sur les méthodes d'apprentissage profond et leur potentiel réel d'application. Dans un contexte d'imagerie territoriale multi-sources, un benchmark est proposé pour caractériser un nouveau problème de recherche : la recherche d'image hétérogène, "low-data" (sans données d'entraînement), avec un cas d'utilisation où définir un jeu de données d'entraînement et une méthode "baseline" n'est pas facile. Avec ce benchmark, de nouvelles mesures sont proposées pour qualifier la capacité à généraliser du modèle dans un contexte RIBC, puis des solutions techniques qui permettent de s'affranchir de la définition hasardeuse des sus-citées "caractéristiques visuelles et sémantiques similaires". La discussion autour des résultats permet de mettre en valeur une importance probablement trop grande donnée à l'architecture des réseaux de neurones, et des pistes prometteuses dans la RIBC qui fournit des outils agnostiques du modèle utilisé, et permettant d'exploiter les avantages comparatifs de différents modèles entraînés sur différents jeux de données. Enfin, l'intérêt de cette approche généraliste est confirmé par une application à un cas où malgré l'abondance de méthodes et de données, elles sont encapsulées dans un ensemble de petits datasets et donc peu généralisables: la classification d'occupation au sol en imagerie satellite.Numéro de notice : 14738 Affiliation des auteurs : UGE-LASTIG (2020- ) Autre URL associée : vers theses Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse : : Gustave Eiffel : 2021 Organisme de stage : LaSTIG (IGN) & LIRIS (Ecole Centrale de Lyon) nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-03629550 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98921
Titre : Intelligent embedded camera for robust object tracking on mobile platform Titre original : Caméra intelligente embarquée pour le suivi robuste d'objets sur plateforme mobile Type de document : Thèse/HDR Auteurs : Imane Salhi , Auteur ; Valérie Gouet-Brunet
, Directeur de thèse
Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2021 Importance : 177 p. Format : 21 x 30 cm Note générale : bibliographie
Doctoral Thesis Computer Science, Automation and Signal Processing, Ecole doctorale Mathématiques et STIC, Université Gustave EiffelLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] caméra numérique
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] centrale inertielle
[Termes IGN] couplage caméra/INS
[Termes IGN] détection d'objet
[Termes IGN] instrument embarqué
[Termes IGN] méthode robuste
[Termes IGN] navigation inertielle
[Termes IGN] odomètre
[Termes IGN] système à couplage étroit
[Termes IGN] système de numérisation mobileRésumé : (auteur) Le suivi visuel-inertiel est une thématique d'actualité, difficile à traiter, notamment lorsqu’il s’agit de respecter les contraintes des systèmes embarqués, comme dans les drones autonomes (Unmanned Aerial Vehicles (UAVs)). Les questions relatives à la miniaturisation, la portabilité et la communication des systèmes électroniques s’inscrivent dans des problématiques actuelles en matière d'avancée technologique. Pour répondre de manière efficace à ces problématiques, il est nécessaire d’envisager des traitements complexes et des implémentations sur des supports contraignants en termes d’intégration et de consommation d’énergie, tels que les micro-véhicules aériens (MAVs), les lunettes et les caméras intelligentes. Au cours de cette dernière décennie, différents algorithmes performants de suivi ont été développés. En revanche, ils nécessitent des ressources calculatoires conséquentes, compte tenu des différentes formes d'utilisation possibles. Or, les systèmes embarqués imposent de fortes contraintes d'intégration, ce qui réduit leurs ressources, particulièrement en termes de capacité calculatoire. Ainsi, ce type de système nécessite de recourir à des approches efficaces avec moins de charge et de complexité calculatoire. L’enjeu de cette thèse réside dans cette problématique. L'objectif est d’apporter une solution embarquée de suivi qui permettrait d'assurer un fonctionnement robuste dans différents environnements de navigation. Une analyse des algorithmes pertinents de suivi, visuel et visuel-inertiel et des environnements de navigation ainsi qu’une étude de différentes architectures embarquées de calcul sont menées, afin de proposer notre solution nommée « système de suivi inertiel-visuel adaptatif à l'environnement de navigation~». Cette dernière consiste à alterner entre deux approches de suivi : KLT-ORB et EKF VI Tracking, selon les conditions de navigation du système, grâce au module de contrôle, tout en assurant la cohérence du système global en gérant le nombre de PoIs et l'occurrence de leur détection et en respectant les contraintes des systèmes embarqués. Tous nos expérimentations et tests ont été réalisées en utilisant le jeux de données EuRoC. Numéro de notice : 17632 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/POSITIONNEMENT Nature : Thèse française Note de thèse : Thèse : Informatique, automatique et traitement du signal : Gustave Eiffel : 2021 Organisme de stage : LaSTIG (IGN) + Laboratoire L3A (CEA) nature-HAL : Thèse DOI : sans Date de publication en ligne : 03/03/2021 En ligne : https://hal.archives-ouvertes.fr/tel-03150241 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97275 PermalinkModélisation et raisonnement spatial flou pour l’aide à la localisation de victimes en montagne / Mattia Bunel (2021)
PermalinkObject detection using component-graphs and ConvNets with application to astronomical images / Thanh Xuan Nguyen (2021)
PermalinkInformation Géographique Volontaire, vers un usage conjoint avec l’information géographique institutionnelle / Ana-Maria Olteanu-Raimond (2020)
PermalinkVers une occupation du sol France entière par imagerie satellite à très haute résolution / Tristan Postadjian (2020)
Permalink