Détail de la série
Learning to understand remote sensing images |
Documents disponibles dans cette série (2)



Titre de série : Learning to understand remote sensing images, 1 Titre : Volume 1 Type de document : Monographie Auteurs : Qi Wang, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2019 Importance : 426 p. ISBN/ISSN/EAN : 978-3-03897-685-1 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse texturale
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat
[Termes IGN] image radar moirée
[Termes IGN] réseau neuronal convolutifRésumé : (Editeur) With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field. Numéro de notice : 26301A Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Monographie DOI : 10.3390/books978-3-03897-685-1 Date de publication en ligne : 09/12/2019 En ligne : https://doi.org/10.3390/books978-3-03897-685-1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95033
Titre de série : Learning to understand remote sensing images, 2 Titre : Volume 2 Type de document : Monographie Auteurs : Qi Wang, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2019 Importance : 376 p. ISBN/ISSN/EAN : 978-3-03897-699-8 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse texturale
[Termes IGN] apprentissage profond
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat
[Termes IGN] image radar moirée
[Termes IGN] réseau neuronal convolutifRésumé : (Editeur) With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field. Numéro de notice : 26301B Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Monographie DOI : 10.3390/books978-3-03897-699-8 Date de publication en ligne : 09/12/2019 En ligne : https://doi.org/10.3390/books978-3-03897-699-8 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95034